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Abstract
Cytokinesis is an intricate process that requires an intimate interplay between actomyosin ring constriction
and plasma membrane remodelling at the cleavage furrow. However, the molecular mechanisms involved
in coupling the cytoskeleton dynamics with vesicle trafficking during cytokinesis are poorly understood. The
highly conserved Golgi phosphoprotein 3 (GOLPH3), functions as a phosphatidylinositol 4-phosphate (PI4P)
effector at the Golgi. Recent studies have suggested that GOLPH3 is up-regulated in several cancers and is
associated with poor prognosis and more aggressive tumours. In Drosophila melanogaster, GOLPH3 localizes
at the cleavage furrow of dividing cells, is required for successful cytokinesis and acts as a key molecule in
coupling phosphoinositide (PI) signalling with actomyosin ring dynamics. Because cytokinesis failures have
been linked with pre-malignant disease and cancer, the novel connection between GOLPH3 and cytokinesis
imposes new fields of investigation in cancer biology and therapy.

Introduction
Cytokinesis is the conclusive act of cell division that separates
the genomic material and the cytoplasm of the mother cell
into two daughter cells [1]. In animal cells, constriction
of a plasma membrane-anchored actomyosin ring leads
to the formation of a cleavage furrow that ingresses until
the two nascent daughter cells remain connected by a thin
cytoplasmic bridge [1]. During the last step of cytokinesis,
dubbed abscission, the intercellular bridge is ultimately
severed, leading to complete separation of daughter cells.
A network of scaffolding proteins, including septins and
anillin, ensures the tightly anchoring of the actomyosin
ring to the plasma membrane during furrow ingression
and abscission [2,3]. In symmetrically dividing cells, the
cleavage site is set up in a position that bisects the axis of
chromosome separation, thus securing the equal distribution
of genomic and cytoplasmic contents between the two
daughter cells [1,4]. During anaphase, the mitotic spindle
reorganizes to generate the central spindle (CS), an array
of antiparallel, interdigitating microtubule (MT) bundles
[4,5]. The CS MTs transmit the spatial information required
for cleavage furrow formation by delivering regulators
of the small Rho-GTPase to the equatorial cortex [6,7].
In turn, the accumulation of active Rho-GTPase at the
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equatorial cortex is the primary signalling event that sets
up the site of cleavage furrow formation by controlling
both profilin-mediated actin polymerization at the plasma
membrane and myosin II activation [6,7]. The balance
between the active state (GTP-bound) and inactive state
(GDP-bound) of RhoA/Rho1 depends on the guanine-
nucleotide-exchange factor (GEF) ECT2 (epithelial cell
transforming sequence 2 oncogene)/Pebble and the GTPase-
activating protein (GAP) MgcRacGAP/RacGAP50C.
MgcRacGAP/RacGAP50C binds to the kinesin mitotic
kinesin-like protein (MKLP1)/Pavarotti to form the
centralspindlin complex, an evolutionary conserved hetero-
tetramer required for CS formation [1,7]. Compelling
data have demonstrated that the Rho GEF ECT2/Pebble
associates with the MgcRacGAP/RacGAP50C component
of centralspindlin to form a ternary complex leading to
local activation of RhoA/Rho1 at the equatorial cortex [1,7].
Besides actomyosin ring constriction, animal cell cytokinesis
involves vesicle transport from both the endocytic/recycling
and the secretory pathways [8,9]. The requirement for
membrane trafficking during cytokinesis has been associated
with the increase in total surface area during furrowing and
with the timely delivery of signalling factors that regulate
this process [8]. Recent data have also demonstrated a role for
specific lipids in the cleavage furrow and revealed changes in
lipidome during cell division [10–12]. It has been suggested
that a special lipid composition would facilitate the dynamic
interplay between the plasma membrane and actomyosin
apparatus and regulate vesicle targeting/fusion events at the
cleavage furrow [8,9,11].

The highly conserved Golgi phosphoprotein 3 (GOLPH3)
has been characterized as a phosphatidylinositol 4-phosphate
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(PI4P) effector at the Golgi [13]. In addition GOLPH3
functions as a potent oncogene and is amplified in several solid
tumours [14]. Yet, the molecular mechanisms that link this
protein to malignant transformation have not been clarified.
In our recently published work [15], we provided the first
evidence to date implicating GOLPH3 in cytokinesis. We
demonstrated that the Drosophila homologue of GOLPH3
localizes at the cleavage site and controls both contractile
ring formation and vesicle trafficking in dividing cells. Based
on these data, GOLPH3 acts as a key molecule to coordinate
membrane remodelling and cytoskeletal dynamics during cell
cleavage.

GOLPH3 proteins localize to the Golgi
through binding to PI4P and are required
for Golgi architecture
Mapped in a chromosomal region that is frequently amplified
in several solid tumours, human GOLPH3 was validated as
a new oncogene by combining integrative genomics with
clinicopathological and functional analysis [14]. Since then,
up-regulation of GOLPH3 has been reported in several
cancers including lung cancer, esophageal squamous-cell
carcinoma, colorectal, prostate, breast cancer, melanoma,
glyoma and connective tissue tumours [16–22]. Furthermore
GOLPH3 overexpression has been linked with poor
prognosis and more aggressive tumours [16,18–22]. Taken
together these data have suggested that GOLPH3 might be
used as a prognostic biomarker of tumour progression [16,18–
22].

GOLPH3 family represents a group of Golgi proteins that
are highly conserved across eukaryotes and serve an essential
function for vesicle trafficking and Golgi structure [13,23–
25]. Vertebrate species have two paralogues GOLPH3 (also
referred to as GPP34, GMx33, MIDAS) and GOLPH3L
(Golgi phosphoprotein 3-like; GPP34R/GMx33β), whereas
lower organisms including D. melanogaster have a unique
isoform [13,23,24]. The mammalian GOLPH3-proteins were
firstly identified during a proteomic analysis of an isolated
Golgi fraction and described as phosphorylated components
of the Golgi matrix [23,24]. GOLPH3 was later demonstrated
as a PI4P-binding protein through a high throughput
proteomic screen based on the lipid-binding assay using
D. melanogaster proteome [13]. To identify the minimal
portion of GOLPH3 proteins that retains the ability to
bind to PI4P, Dippold et al. [13] constructed a series of
truncations of Drosophila GOLPH3 that were tested by
lipid blot assay. Based on this analysis, binding to PI4P
requires amino acids 30–293 of Drosophila GOLPH3, which
corresponds to the most evolutionary conserved region
dubbed GPP34 domain by PFAM (Figure 1). The same series
of truncations, when expressed in human embryonic kidney
(HEK)-293 cells as GFP fusion proteins, revealed that Golgi
localization requires the GPP34 domain of GOLPH3 [13].
Several studies, including our work, have led to demonstrate
that GOLPH3 localizes to the Golgi membranes through

binding to PI4P [13,15,26]. In budding yeast, mutations in the
gene PIK1, which encodes the unique Golgi phosphoinositide
4-kinase (PI4K) [27] impaired recruitment of vacuolar
protein sorting 74 protein (Vps74p) (the yeast orthologue
of GOLPH3) to the Golgi [13,26]. Similarly, we showed that
Drosophila GOLPH3 failed to concentrate at the Golgi in
spermatocytes from males carrying in the gene four wheel
drive (fwd), which encodes the PI4K IIIβ [15]. In addition,
the analysis of X-ray crystal structure of GOLPH3 and
Vps74p revealed a conserved positively-charged pocket on
the hydrophobic face of these proteins that might mediate
PI4P binding [26]. Consistent with these data, mutant variants
of GOLPH3/Vps74p, carrying amino acid substitutions in
the putative PI4P-binding pocket, failed to localize at the
Golgi when tested in either budding yeast, HeLa cells or
Drosophila [13,15,26].

In human cells, PI4P and GOLPH3 protein are required
to maintain the Golgi architecture [13]. Depletion of
human GOLPH3 disrupts the Golgi morphology from
an extended Golgi ribbon to a compacted structure at
one end of the nucleus [13]. Remarkably, Dippold et al.
[13] observed similar Golgi alterations after depletion of
unconventional myosin 18A (MYO18A) or in cells treated
with drugs that affect F-actin cytoskeleton. Furthermore,
they found that GOLPH3 interacted with the unconventional
MYO18A. These observations led them to propose a model
whereby human GOLPH3 binds to PI4P-enriched trans-
Golgi and MYO18A thus mediating a linkage with the F-
actin cytoskeleton that facilitates the flattening of the Golgi
stacks, as well as vesicle formation [13].

Our work demonstrated that Drosophila GOLPH3 too is
required for normal Golgi structure [15]. Most Drosophila
cells, including spermatocytes, lack a Golgi ribbon [28]. Each
Drosophila Golgi has a paired structure consisting of two
stacks held together through an actin-based mechanism [28].
Spermatocytes carrying mutations in Drosophila GOLPH3,
exhibited a 1.9-fold increase in the number of Golgi bodies
with the average size decreased by 50 % indicating a role
for GOLPH3 protein in maintaining the integrity of paired
Golgi stacks [15]. It is then likely that GOLPH3 participates
in a PI4P-dependent recruitment of actin-regulatory factors
that contribute to regulate pairing of the Golgi stack
structure.

GOLPH3 is required for contractile ring
formation and membrane trafficking
during cytokinesis
Drosophila male meiosis provides as a well-suited cell system
for the analysis of membrane trafficking and membrane
remodelling during cytokinesis [29]. Indeed mutant screens
for mutants affecting male meiotic cytokinesis have allowed
identifying a large number of vesicle-trafficking components
and membrane remodelling factors required for this process
[29]. Studies from our group and others revealed that
spermatocyte cytokinesis requires the wild-type functions
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Figure 1 Drosophila melanogaster GOLPH3 protein

(A) Comparison between human and Drosophila GOLPH3 proteins. Amino acid identity for the entire protein is indicated. (B)

Alignment of Drosophila GOLPH3 protein with human GOLPH3 (by ClustalW2). Green and red indicate mutations affecting

binding of Drosophila GOLPH3 to PI4P, with green indicating substitution of lysine for glutamic acid (E273K), red indicating

substitutions of alanine for lysine (K167A) and of alanine for arginine (R170A). Blue indicates the clathrin box sequence. (*)

fully conserved residue; (:) conservation between groups of strongly similar properties; (.) conservation between groups of

weakly similar properties. (C) In dividing spermatocytes, GOLPH3 protein is enriched in Golgi-derived vesicles (arrowhead)

and at the cleavage furrow (arrow).

of several Golgi proteins including the conserved oligomeric
Golgi-complex (COG) subunits Cog5 and Cog7 [30,31],
the Golgi PI4K IIIβ Fwd [32], the endoplasmic reticulum
(ER) to Golgi-vesicle docking protein syntaxin 5 [33]
and Brunelleschi, the Drosophila orthologue of the yeast
transport protein particle (TRAPP) II TRS120p subunit
[34]. Another membrane-trafficking component required
for male meiotic cytokinesis is Rab11. Implicated in both
Golgi and recycling endocytic trafficking, this protein
concentrates in vesicles that enrich at the cleavage furrow
[35]. Phosphatidylinositol phosphates (PIPs) have emerged
as important signalling molecules for cytokinesis in several
organisms including Drosophila [11] and several proteins

involved in the phosphoinositide (PI) cycle have been
implicated in Drosophila cytokinesis. The Drosophila PI-
transfer protein Giotto/Vibrator (Gio/Vib) concentrates at
the ER membranes and at the cleavage furrow of dividing
spermatocytes and is required for furrow ingression in both
spermatocytes and larval neuroblasts [36,37]. Phenotypic
analysis of loss-of-function fwd mutants also implicates
the requirement for PI4P in spermatocyte cytokinesis [32].
Previously, work in Dr Brill’s laboratory showed that Fwd
protein binds Rab11 and co-localizes with both this protein
and PI4P markers at the Golgi [38]. Mutations in fwd
disrupt the synthesis of PI4P on Golgi membranes and impair
the accumulation of Rab11- and PI4P-containing secretory
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organelles at the cell equator [38]. However, Fwd protein does
not accumulate at the cleavage furrow during cytokinesis [38].
Importantly, our recent study demonstrated that the PI4P-
binding protein GOLPH3 accumulates at the cleavage furrow
of Drosophila dividing spermatocytes and larval neuroblasts
and is required for cytokinesis in both cell types [15]. We
showed that GOLPH3 function in cytokinesis is intimately
connected to its ability to bind PI4P. Mutations that abolish
PI4P binding (Figure 1B), impair recruitment of GOLPH3
to both the Golgi and the cleavage furrow. Moreover,
mutations that abolish GOLPH3–PI4P interaction also
impair localization of PI4P-and Rab11-associated secretory
organelles at the cleavage site [15]. Consistent with a role in
targeting PI4P-and Rab11-secretory vesicles to the cleavage
furrow, we found that GOLPH3 forms a complex with
Rab11. Our biochemical studies also indicated a potential
molecular interaction between GOLPH3 and clathrin which
is further suggested by the presence of a putative clathrin-
binding motif [39], ‘LLDLD’, in the GOLPH3 amino acid
sequence (Figure 1B) [15].

GOLPH3 also interacts with components of the CS and
the contractile ring and is required for maintenance of
centralspindlin and Rho1 at cell equator and stabilization
of myosin II and septin rings [15]. Several studies have
shown that PI4P is the substrate for phosphatidylinositol
4-phosphate 5-kinase that generates the PI(4,5)P2 lipid
in the cleavage furrow where it regulates formation and
stability of the cytokinetic structures [11]. Indeed, several
cytokinesis proteins including Rho, the RhoGEF ECT2 and
the centralspindlin subunit MgcRacGAP, contain protein
domains that bind to PI(4,5)P2 and/or PI4P and mediate
plasma membrane interactions at the cleavage site [40–43].
Septins interact in vitro with PIPs and polymerization of
these proteins into filaments is enhanced by association
with lipid bilayers [11,44]. Finally, PI(4,5)P2 is known to
stimulate F-actin polymerization by modulating the activity
of the actin-binding proteins profilin and cofilin [11,45].
Remarkably, visualization of the PI(4,5)P2 in spermatocytes
expressing phospholipase Cδ (PLCδ)–pleckstrin homology
(PH)–GFP shows an enrichment of this lipid at the cleavage
furrow membrane in wild-type but not in GOLPH3 [15].
Based on these data, both PI4P–GOLPH3 and PI(4,5)P2 are
likely to regulate interaction of centralspindlin, septins and
actomyosin with plasma membrane during cytokinesis. In the
absence of GOLPH3, PI4P–GOLPH3 and PI(4,5)P2 fail to
concentrate at the cleavage furrow. As a result, localization
of centralspindlin at the equatorial cortex is not maintained,
centralspindlin-associated MTs fail to stably bundle and
septin/myosin II rings are not stabilized.

Conclusions
Cytokinesis failures cause the formation of genetically-
unstable tetraploid cells, thus promoting tumorigenesis
[46,47]. Indeed, compelling data suggest that tetraploidy can
lead to tumour initiation [46,47]. Tetraploid cells created
from p53 null mouse mammary epithelial cells (MMECs)

promote malignant cancer formation when transplanted into
nude mice, in contrast with the diploid p53− null controls
[48]. Similarly, APC (adenomatous polyposis coli) mutations
found in human colorectal cancer impair cytokinesis and
cause tetraploidy before the early steps of colorectal cancer
development [49]. Importantly, recent data have suggested
that GOLPH3 might be a promising therapeutic target for
cancer therapy [18,22]. However our finding that depletion of
GOLPH3 results in cytokinesis failures and tetraploidy raise
new questions regarding the mechanisms of tumorigenesis
associated with this oncogene.
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