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Cytokinesis requires a tight coordination between actomyosin ring constric-

tion and new membrane addition along the ingressing cleavage furrow.

However, the molecular mechanisms underlying vesicle trafficking to

the equatorial site and how this process is coupled with the dynamics of the

contractile apparatus are poorly defined. Here we provide evidence for the

requirement of Rab1 during cleavage furrow ingression in cytokinesis. We

demonstrate that the gene omelette (omt) encodes the Drosophila orthologue

of human Rab1 and is required for successful cytokinesis in both mitotic

and meiotic dividing cells of Drosophila melanogaster. We show that Rab1

protein colocalizes with the conserved oligomeric Golgi (COG) complex

Cog7 subunit and the phosphatidylinositol 4-phosphate effector GOLPH3 at

the Golgi stacks. Analysis by transmission electron microscopy and 3D-SIM

super-resolution microscopy reveals loss of normal Golgi architecture in omt
mutant spermatocytes indicating a role for Rab1 in Golgi formation. In divid-

ing cells, Rab1 enables stabilization and contraction of actomyosin rings. We

further demonstrate that GTP-bound Rab1 directly interacts with GOLPH3

and controls its localization at the Golgi and at the cleavage site. We propose

that Rab1, by associating with GOLPH3, controls membrane trafficking and

contractile ring constriction during cytokinesis.
1. Background
Cytokinesis represents the final act of cell division when a mother cell

becomes fully partitioned into two daughter cells [1]. Cytokinesis failures

can contribute to several human diseases including blood disorders [2], age-

related macular degeneration [3], Lowe syndrome [4], female infertility [1,5]

and cancer [1,5]. In animal cells, cytokinesis relies upon constriction of a

plasma membrane-anchored actomyosin ring, which leads to cleavage

furrow ingression at the equatorial cortex [1]. To fully separate each mother

cell into two daughter cells, cytokinesis is also associated with a considerable

expansion of cell plasma membrane [1]. Insertion of new membrane during

cytokinesis is achieved through shuttling of membrane vesicles to the ingres-

sing cleavage furrow and involves both secretory and endocytic/recycling

trafficking activities [1,6]. Accumulating evidence also indicates that
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phosphoinositide lipids regulate both contractile ring

dynamics and membrane trafficking during cytokinesis [7].

Drosophila male meiosis provides an excellent cell system

to dissect the vesicle trafficking pathways involved in cyto-

kinesis [8,9]. Indeed screens for mutants affecting

spermatocyte cytokinesis have identified several com-

ponents of the Golgi and endocytic/recycling machinery,

comprising the conserved oligomeric Golgi complex (COG)

subunits Cog5 and Cog7, the TRAPPII complex subunit Bru-

nelleschi, the syntaxin 5 ER-to-Golgi vesicle-docking protein,

the small GTPases Rab11 and Arf6, the COPI subunits and

the exocyst complex proteins Sec8 and Exo84 [10–17].

Mutations affecting male meiotic cytokinesis have also

revealed the requirement for proteins that regulate the

phosphoinositide pathway including the Drosophila phos-

phatidylinositol (PI) transfer protein (PITP) Giotto/Vibrator

(Gio/Vib) and the PI 4-kinase III b Four wheel drive

(Fwd) [18–20]. Both Fwd and Gio/Vib are required to loca-

lize Rab11 at the cleavage site [18,21]. Fwd directly binds

Rab11 at the Golgi and is required for synthesis of PI

4-phosphate (PI(4)P) on Golgi membranes and for localiz-

ation of secretory organelles containing both PI(4)P and

Rab11 at the cleavage site [21]. We have recently shown

that the oncoprotein GOLPH3, described as a PI(4)P effector

at the Golgi [22], accumulates at the cell equator of dividing

cells and is required for cleavage furrow ingression in Droso-
phila [23]. GOLPH3 function during cytokinesis is intimately

connected to its ability to bind PI(4)P and regulates both the

dynamics of the actomyosin ring and vesicle trafficking to

the cleavage site [22–24].

The small GTPase Rab1 regulates endoplasmic reticulum

(ER) to Golgi and intra-Golgi trafficking through different

effectors [25,26]. Rab1, in its GTP-bound, active form, binds

the tethering factors p115 [27] and GM130 [28,29] which

regulate coat protein II (COPII) mediated ER-to-Golgi trans-

port. Rab1 also modulates coat protein I (COPI) recruitment

by binding the GBF-type (Golgi-brefeldin A resistance

factor) ADP-ribosylation factor guanine nucleotide exchange

(ARFGEF) factor [30]. Rab1 proteins have been involved in

several cellular signalling pathways that include nutrient sig-

nalling [31,32], Notch signalling [33], cell migration [34] and

regulation of autophagy [35,36]. Moreover, deregulation of

Rab1 expression has been linked to several human cancer

types [31,32,37–40] and other human diseases including

cardiomyopathy [41] and Parkinson’s disease [42,43].

Recent work has suggested that a complex of human Rab1B

with the oncogene PITPNC1, by augmenting PI(4)P Golgi

levels, might indirectly enhance recruitment of GOLPH3 to

the Golgi and facilitate Golgi extension and vesicular

secretion of pro-tumour factors in cancer cells [44]. Here we

provide the first evidence for a role of Rab1 in cytokinesis.

We show that the gene omelette, identified during a screen

for mutants affecting male meiotic cytokinesis [45], encodes

the Drosophila orthologue of human Rab1 and is required

for contractile ring constriction during cytokinesis of both

mitotic and meiotic cells. We demonstrate that Rab1 directly

interacts with GOLPH3 and contributes to the architecture of

interphase Golgi stacks in Drosophila spermatocytes. We

further show that Rab1 enables localization of the GOLPH3

complex at the cleavage furrow. We propose that Rab1, by

recruiting GOLPH3 at the Golgi membranes, controls the

flow of secretory vesicle trafficking that is necessary for

proper furrow ingression during cytokinesis.
2. Results
2.1. The Drosophila homologue of Rab1, omelette, is

required for cytokinesis during meiosis
The omelettez4144 (omtz4144) allele was identified during a screen

for mutations that disrupt cytokinesis in Drosophila spermato-

cytes [45]. The omtz4144 mutation was mapped to a single

interval, between stripe and claret on the third chromosome

[45]. The interval was further delineated to the chromosomal

region 93C6–93E1, defined by the deletion Df(3R)eF1, which

failed to complement omtz4144 [45]. Complementation analysis

with a series of chromosomal deletions uncovering the interval

93C6–93E1, revealed that omtz4144 complemented Df(3R)GC14,

but failed to complement both Df(3R)ED10845 and

Df(3R)ED10838 for the male sterility and male meiotic defects,

indicating that it maps to a region that contains the annotated

CG3320 gene (figure 1a,b; electronic supplementary material,

figure S1a). CG3320 encodes a polypeptide of 205 amino acids

that is 82.9% identical to human Rab1A and 82.1% to human

Rab1B [46] (electronic supplementary material, figure S1b).

Thus, hereafter we refer to CG3320 as Drosophila Rab1. Two

P-element lethal insertions in Rab1, namely Rab1S147213 and

Rab1e01287, failed to complement omt z4144 for both the male steri-

lity and meiotic cytokinesis phenotype indicating that omtz4144 is

a mutant allele of Rab1 (figure 1a,b; electronic supplementary

material, figure S1a). YFP-Rab1 protein expressed under the

control of the male germ line promoter spermatocyte arrest
(sa, [47]) and RFP-Rab1 expressed under the control of a

tubulin promoter fully rescued the cytokinesis defects of

omtz4144/Df(3R)ED10838 (omt/Df) mutant males, confirming

that the cytokinesis phenotype is the consequence of a mutation

in the Rab1 locus (figure 1a,b). Sequencing of the Rab1 gene

in the EMS-induced omtz4144 mutants, failed to reveal alterations

in the protein coding exons when compared with the DNA

sequence of the original Zuker-background chromosome. How-

ever, as western blot analysis indicated that Rab1 expression was

strongly reduced in omt/Df and omtz4144/Rab1S147213 mutants

(see below), we surmise that the molecular lesion in the

omtz4144 mutant allele is likely to affect some regulatory elements.

Our previous characterization of omt mutants suggested that

F-actin and anillin rings formed normally during early stages

of telophase but appeared broken or unconstricted in late telo-

phase [45]. To gain further insight into the cytokinesis

phenotype of the omt/Df mutant, telophase spermatocytes

were stained for the myosin II heavy chain Zipper ([48],

figure 1c). All spermatocytes from both wild-type and omt/Df
mutant males assembled Zipper rings at the cell equator

during early stages of telophase (figure 1c). However, during

later stages of cytokinesis, 100% of mid-telophases from wild-

type cells displayed constricted Zipper rings (figure 1c), whereas

75% of mid–late telophases from omt/Df mutants displayed

unconstricted and fragmented Zipper rings (N ¼ 33 wild-type

mid–late telophase cells; N ¼ 28 omt/Df mutant mid–late telo-

phase cells). Localization of Pavarotti (Pav) [49], the Drosophila
orthologue of human MKLP1, was also affected in omt/Df
mutant spermatocytes. Wild-type spermatocytes at mid-telo-

phase displayed a tight equatorial band of Pav (100% of

dividing mid-telophases, N¼ 48). Conversely, 75% of mid-telo-

phases from omt/Df mutant spermatocytes (N ¼ 44) displayed

only weak concentration of Pav at both peripheral and interior

microtubules (electronic supplementary material, figure S2a).
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Figure 1. Rab1 is required for cytokinesis in meiotic and mitotic cells. (a) Rescue of omt cytokinesis defects by Rab1. Testes from 3 – 5 days old males carrying either
omtz4144/Df(3R)ED10338 (omt/Df ) or omtz4144/S147213 (omt/S147213) genotypes, viewed using phase-contrast microscopy, display irregular spermatids containing
multiple nuclei ( phase light, white arrow) associated with enlarged mitochondrial derivatives (nebenkern, phase dark, black arrow). Each wild-type spermatid
displays a single nucleus (white arrow) associated with a nebenkern (black arrow) of similar size. A single copy of RFP-Rab1 transgene can rescue the cytokinesis
defects associated with omt/Df mutation. A minimum of 500 spermatids, derived from at least 10 males, was examined for each genotype. Scale bar, 10 mm.
(b) Frequencies of spermatids containing 1, 2 or 4 nuclei per mitochondrial derivative in testes from omt mutants (omtz4144/Df(3R)ED10338 (omt/Df ) mutants,
omt/S147213, omtz4144/Rab1e01287(omt/e01287)) in wild-type and in testes from males of genotype RFP-Rab1;omt/Df or YFP-Rab1;omt/Df. Error bars indicate
s.e.m. values. (c) Wild-type and omtz4144/Df(3R)ED10338 (omt/Df ) mutant spermatocytes during early telophase and mid – late telophase stained for the
myosin II heavy chain Zipper (Myo), tubulin and DNA. In total, N ¼ 33 wild-type mid – late telophase cells and N ¼ 28 omt/Df mutant mid – late telophase
cells were analysed. The cells examined were from preparations of individual testes in three independent experiments. Scale bar, 10 mm. (d ) Wild-type and
omt/Df larval neuroblasts during anaphase/early telophase (anaphase) and late telophase (telophase) stained for Zipper, tubulin and DNA. In total, N ¼ 176
wild-type mid – telophase cells and N ¼ 180 omt/Df mutant mid-telophase cells were analysed. Mid – late telophase cells were examined from eight preparations
of individual larval brains per each genotype; cells were examined in three independent experiments. Scale bar, 5 mm.
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2.2. Drosophila Rab1 is required for cytokinesis
in mitotic cells

The gene Rab1 is essential for normal development and

viability in Drosophila; animals of genotypes Rab1S147213/
Rab1S147213, Rab1e01287/Rab1e01287 or Rab1S147213/Rab101287 die

during early larval stages (electronic supplementary mater-

ial, figure S1a) and adult flies of genotype omt/Df have a

reduced lifespan when compared with control siblings

(only 2% of omt/Df animals (N ¼ 300) survive after ten
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Figure 2. Rab1 is required for cytokinesis in larval neuroblasts and S2 cells. (a) Wild-type and omt/Df larval neuroblasts during anaphase/early telophase (upper
panels) and mid – late telophase stained for anillin, a-tubulin and DNA. In 100% of wild-type cells, anillin rings appear constricted during mid – late telophase. By
contrast, 31% of dividing neuroblasts from the omt/Df mutants displayed large and broken anillin rings. In total, N ¼ 48 wild-type mid-telophases and N ¼ 52
mid-telophases from omt/Df mutants were analysed from preparations of six individual larval brains per each genotype; cells were examined in three independent
experiments. Scale bar, 5 mm. (b) Rab1 depletion impairs anillin localization in cytokinesis. Cells were treated with Rab1 dsRNA (Rab1 RNAi) or with kanamycin
dsRNA (control) for 72 h and then fixed and stained to reveal anillin, tubulin and DNA. (c) Quantification of defective anillin rings in S2 cells treated with Rab1
dsRNA (Rab1 RNAi) or with kanamycin dsRNA (control) for 72 h. ***p , 0.0001. (d ) S2 cells fixed and stained to detect anillin, tubulin and DNA. The percentage of
binucleate cells was calculated using the results of three independent experiments. More than 2000 cells were counted in each experiment. Scale bar, 10 mm.
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days from the eclosion, compared with 100% of wild-type

animals (N ¼ 280)). A single copy of the RFP-Rab1 transgene

rescued the semi-lethality of omt/Df animals confirming

that this phenotype is due to a mutation in Rab1. Immuno-

staining of larval brains for tubulin and either Zipper or

anillin revealed cytokinesis defects in dividing neuroblasts

(figures 1d and 2a). One hundred per cent of mid-telophases

from wild-type larval neuroblasts (N ¼ 176 mid-telophases)

displayed constricted Zipper rings (figure 1c) whereas 30%

of mid-telophases (N ¼ 180 mid-telophases) from omt/Df
mutants displayed large and unconstricted Zipper rings,

indicating the requirement for Rab1 for mitotic cytokinesis

of larval neuroblasts. Similarly, all the anillin rings from

wild–type larval neuroblasts appeared constricted during

mid-late telophase (100% of mid-telophases, N ¼ 48). By con-

trast, 31% of dividing neuroblasts from the omt/Df mutants

displayed large and broken anillin rings (N ¼ 52 mid-telo-

phases). We also used RNAi to knock down Rab1 GTPase

in Drosophila S2 cells. We found unconstricted anillin rings
at the cleavage furrow after depletion of Rab1 (figure 2b,c)

similar to the defective anillin rings of larval brain neuroblasts

from omt/Df mutant animals (figure 2a). Depletion of Rab1

GTPase in dividing S2 DMel cells also impaired formation of

tight Pav bands at the cell equator in mid-telophases (electronic

supplementary material, figure S2b). Consistent with a role for

Rab1 in cytokinesis, S2 cells treated with double-stranded

RNA against Rab1 displayed a significant increase in

the number of binucleate cells compared with control cells

(N ¼ 2000 cells from three independent experiments (figure 2d).

Taken together these results indicate that Rab1 is required

for cytokinesis in mitotic dividing cells.
2.3. Rab1 localizes to Golgi organelles and is enriched
at the cleavage site during telophase

To analyse the subcellular localization of Rab1, we raised

polyclonal antibodies against Drosophila Rab1 protein that
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(f ) Anaphase (upper panel) and telophase (lower panel) spermatocytes stained for Rab1, Lva and DNA. N ¼ 26 anaphases and N ¼ 32 telophases were examined
in testes stained for Rab1 and Lva. Dividing spermatocytes were examined from images taken in three independent experiments. Arrows in (e) and ( f ) point to Rab1
enrichment at the cleavage site. Scale bars, 10 mm.
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recognized a band of the predicted molecular weight in wes-

tern blots from extracts of adult testes and larval brains

(figure 3a; electronic supplementary material, figure S3a). The

intensity of the Rab1 band appeared strongly reduced in
testis and brain extracts from omt/Df and omtz4144/

Rab1S147213 mutants, compared with wild-type, indicating

that the antibodies specifically reacted with Drosophila Rab1

(figure 3a,b). Indeed both mouse and rabbit anti-Rab1
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antibodies recognized a 23 kDa band that appeared signifi-

cantly reduced in S2 DMel cells that were depleted of Rab1,

thus confirming the specific antigen binding of these antibodies

(electronic supplementary material, figure S3b,c). Immunofluor-

escence analysis of interphase spermatocytes revealed that Rab1

protein localized to multiple structures (electronic supplemen-

tary material, figure S3d) that also contain the Golgi proteins

Lava lamp (Lva) [50], GOLPH3 and Cog7 (figure 3c,d).

In dividing spermatocytes, from metaphase to telophase,

Rab1 was associated with Golgi organelles in the polar regions

of the cell (figure 3e,f ). During telophase the majority of Rab1

protein was enriched at the polar regions of the cell, in a pattern

comparable with Lva (figure 3e,f ). However, unlike Lva, Rab1

also concentrated at the cleavage furrow of dividing spermato-

cytes during telophase (figure 3e,f; electronic supplementary

material, figure S4). As in spermatocytes, Rab1 was also visual-

ized at the cleavage furrow of normal S2 DMel cells but not in

cells that were treated with double-stranded RNA against

Rab1 (electronic supplementary material, figure S3e).

2.4. Mutations in Drosophila Rab1 affect the
architecture of Golgi stacks in premeiotic primary
spermatocytes

Several Drosophila genes encoding membrane-trafficking pro-

teins are required for the proper structure of Golgi stacks in

interphase primary spermatocytes [11,17,23]. Rab1 is essential

for maintaining Golgi structure in Drosophila spermatocytes,

consistent with the previous finding that human Rab1 controls

Golgi architecture [51,52]. In premeiotic wild-type spermato-

cytes at stage S5 [23], stained for the golgin Lva, the average

number of fluorescent bodies per cell was 25 (N ¼ 31 cells

from six independent experiments) (figure 4a,b). Conversely,

spermatocytes from omt/Df mutant males, stained for Lva at

the same stage, exhibited a 1.4-fold increase in the number of

fluorescent bodies (average of 33 (N ¼ 29 cells examined,

from six independent experiments)) (figure 4a,b), with the aver-

age size decreased by 55% (figure 4a,b). We further investigated

the change in architecture of the Golgi in omt/Df mutants using

3D-SIM super-resolution microscopy. The increased resolution

revealed that the Golgi stacks appear ‘collapsed’ in omt/Df
mutant cells (figure 4c). Interphase spermatocytes from

omt/Df mutant males, analysed by transmission electron

microscopy (TEM), displayed abnormal Golgi complexes, com-

prising fragmented cisternae and a few small stacks (15 of 17

Golgi examined; figure 4d). By contrast, in wild-type primary

spermatocytes, Golgi complexes comprised several cisternae

assembled in larger stacks (15 of 15). Moreover, the Golgi

bodies of omt/Df mutant spermatocytes exhibited a large

number of associated small vesicles (15 of 17; figure 4d )

suggesting defects in vesicle targeting to Golgi membranes.

2.5. Relationship between Rab1, GOLPH3 and Cog7
proteins at the Golgi membranes

Our previous work described alterations of Golgi structure in

testes of other membrane-trafficking mutants, including

GOLPH3 and Cog7 mutants [11,17,23]. To examine the func-

tional dependence between Rab1 and GOLPH3, sauz2217/

Df(2L)Exel7010 (GOLPH3) mutant spermatocytes were fixed

and stained for Rab1 and omt/Df mutants were stained for
GOLPH3 (figure 5). Interphase spermatocytes from GOLPH3
displayed a concentration of Rab1 at the Golgi that was fully

comparable with control (figure 5a,b). Similar immunofluores-

cence experiments indicated that Golgi Rab1 localization was

decreased by 40% in Cog7z4495/Df(3R)BSC861 (Cog7) mutants

and that Cog7-GFP localization at the Golgi was not affected

in omt/Df (figure 5a–d). Conversely, omt/Df mutant spermato-

cytes displayed a significant reduction of Golgi-localized

GOLPH3 protein (figure 5e,f ). Consistent with the previous

findings that human Rab1A and Rab1B are essential to recruit

the ArfGEF GBF1 at the Golgi [30,52], mutations in Rab1 dis-

rupted Golgi localization of the GBF1 orthologue Garz [53] in

interphase spermatocytes (electronic supplementary material,

figure S5a). Mutations in Rab1 also impaired localization of

GOLPH3 protein to the cleavage furrow of dividing spermato-

cytes. All telophase spermatocytes from wild-type displayed

accumulation of GOLPH3 protein at the poles and at the clea-

vage site (100% of mid-telophases, N ¼ 48). In contrast with

wild-type, 84% of mid-telophases from omt/Df mutant males

failed to accumulate GOLPH3 to both the poles and the clea-

vage site (N ¼ 44; figure 6a). We next checked whether omt/Df
mutant testes express reduced levels of GOLPH3 compared

with wild-type testes. This analysis failed to reveal a significant

reduction of GOLPH3 expression level in omt/Df mutant testes

(figure 3a,b). Taken together these results indicate that

mutations in Rab1 cause mislocalization of GOLPH3 in both

interphase and dividing spermatocytes.

2.6. Rab1 interacts with Garz and GOLPH3
Our findings indicate that Rab1 colocalizes with GOLPH3 and

Cog7 at the Golgi and raise the question whether these proteins

could physically interact. To test Rab1 and GOLPH3 inter-

action, we used co-immunoprecipitation (Co-IP) assay. Rab1

coimmunoprecipitated with GOLPH3 in testis extracts

(figure 7a). In agreement with previous work in mammalian

cells [30], our Co-IP experiments also revealed the interaction

of Rab1 with the GBF1 protein Garz (electronic supplementary

material, figure S5b). To determine if the interaction between

Rab1 and GOLPH3 was dependent on the GTP-binding

state of Rab1 we used yeast two-hybrid assays to assess the

interaction of GOLPH3 with wild-type Rab1, Rab1Q70L (con-

stitutively active mutant) and Rab1S25N (dominant-negative

mutant). Wild-type GOLPH3 exhibited stronger binding

interaction with Rab1Q70L and the weakest binding with

Rab1S25N, suggesting that GOLPH3 might be a Rab1 effector

(figure 7b). Finally, using purified recombinant proteins, the

interaction between GOLPH3 and Rab1 was demonstrated to

be direct and to be dependent on Rab1 binding to GTP

(figure 7c,d). We next tested the interaction between Rab1

and the COG complex by using glutathione S-transferase

(GST) pull-down analysis and yeast two-hybrid assays

(figure 8a,b). Although GFP tagged Cog7 was pulled down

by both GST-Rab11 and GST-Rab1 (but not GST), from larval

brain lysates, this experiment indicated a more robust inter-

action with GST-Rab1 (figure 8a). However, consistent with

previous data in mammalian cells [54], our yeast two-hybrid

analysis failed to indicate a direct interaction of Rab1 with

either Cog7 or Cog5 proteins (figure 8b). Taken together

these results suggest that Rab1 interaction with the COG com-

plex must be mediated by COG subunits other than Cog5 and

Cog7. To further investigate Rab1/GOLPH3 interaction in situ
in fixed cells, we used a proximity ligation assay (PLA) assay to
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map sites where Rab1 and GOLPH3 are in close proximity

(figure 6b–f). PLA assay confirmed the interaction of

GOLPH3 with Rab1 in fixed interphase and telophase sperma-

tocytes. Remarkably PLA signals were found in close

proximity with Golgi stacks and Golgi derived vesicles,

suggesting the requirement for GOLPH3/Rab1 interaction

for secretory vesicle trafficking (figure 6c–f ). In addition,

PLA signals were found enriched in the cleavage site of
wild-type dividing spermatocytes, suggesting that Rab1 and

GOLPH3 co-function during furrow ingression (figure 6c).
3. Discussion
The evolutionarily conserved small Rab1 GTPase is known to

control ER-to-Golgi and intra-Golgi vesicle trafficking [25,26].
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Here we have provided the first comprehensive demon-

stration for Rab1 function in cytokinesis, in tissues of a

multicellular organism. A possible involvement of Rab1 in

mitotic cytokinesis was previously suggested by a genome-
wide screen aimed at identifying genes required for cytokin-

esis in cultured Drosophila cells, reporting a slight increase of

binucleate cells in RNAi-treated cells when compared with

control [55]. Our analysis reveals defects in early stages of
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cytokinesis of dividing spermatocytes, neuroblasts and S2 cells

with reduced Rab1 protein expression, which result in incom-

plete contractile ring constriction. Although myosin II/anillin
rings were observed in early telophases of omt/Df mutants,

these structures failed to undergo full constriction during cyto-

kinesis. A similar phenotype was found also in Drosophila S2
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cells depleted of Rab1. Failure to assemble functional

actomyosin rings is a commonly observed phenotype in male

meiotic mutants of membrane-trafficking components includ-

ing the COG subunits Cog5 and Cog7 [10,11], the Arf6 and

Rab11GTPases [14,15], the TRAPPII subunit Brunelleschi [13]

and GOLPH3 [23]. A model has been suggested whereby,

during cytokinesis, assembly and dynamics of the contractile

apparatus are intimately connected with vesicle trafficking

and membrane remodelling at the cleavage furrow [24].

In this context, membrane vesicles that fuse with the furrow

membrane during cytokinesis might also transport structural

components of the contractile ring or F-actin regulators.

Indeed, visualization of actin and endocytic vesicles in cellular-

izing Drosophila embryos has suggested that F-actin and

vesicles might be targeted as a unit to the furrow site [56].

Our finding that Rab1 localizes at the Golgi suggests a role

for this protein in Golgi trafficking during cytokinesis. In agree-

ment with this hypothesis, our analysis of Golgi in interphase

spermatocytes by 3D-SIM super-resolution microscopy and

TEM revealed a highly altered structure in Rab1 mutants,
suggesting that defective trafficking through the Golgi may

impair the flow of vesicle trafficking to the cleavage site and

halt cytokinesis. Moreover, the characteristic organization of

Drosophila Golgi into multiple discrete stacks [57], scattered

throughout the cytoplasm, allowed us to uncover structural

defects, caused by Rab1 mutations, that might not be identified

in mammalian cells where the stacks are interconnected into a

single ribbon-like Golgi. Indeed, mutations in Rab1 affected

both the number and size of the Golgi stacks and disrupted

the ultrastructure of Golgi cisternae. Golgi fragmentation is

likely to result from defective COP I-mediated vesicle traffick-

ing, which in turn depends on the GTPase Arf1 and its guanine

nucleotide exchange factor GBF1 [58]. Consistent with this

hypothesis, our work demonstrates that Rab1 interacts with

Garz, the Drosophila orthologue of GBF1, which is essential to

recruit this protein to the Golgi. Golgi fragmentation and traf-

ficking defects are also likely to result from decreased

localization of the PI(4)P-binding protein GOLPH3. Remark-

ably, GOLPH3 is a key protein for maintaining Golgi

architecture and vesicular release [59]. A recent study has
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proposed that human Rab1B, in complex with PITPNC1, might

control Golgi morphology by regulating Golgi PI(4)P levels

and hence indirectly the abundance of the PI(4)P effector

GOLPH3 [44]. In agreement with this work, our data indicate

that GOLPH3 requires wild-type function of Rab1 for its local-

ization at the Golgi membranes during both interphase and

telophase. Moreover, we provide evidence that GOLPH3

protein directly interacts with Rab1-GTP and requires wild-

type function of Rab1 for its recruitment to the cleavage site.

Taken together our data suggest that Rab1 protein, by contri-

buting to GOLPH3 recruitment, enables secretory vesicle

trafficking and actomyosin constriction during cytokinesis.

We cannot exclude that the loss of Rab1 could have additional

effects through other Golgi effectors in addition to GOLPH3

and that the cytokinesis defects might be the indirect conse-

quences of altered secretory or endocytic pathways that are

known to be important for cytokinesis. Indeed mutations in

Rab1 do not affect Golgi localization of Cog7 but disrupt

recruitment of the ArfGEF orthologue Garz, a known Golgi

effector of Rab1. Nevertheless, our data indicate GOLPH3

is a major effector of Rab1 in mediating contractile ring

constriction and cleavage furrow ingression during cytokinesis.

In mammalian cells, a single molecular TRAPPII complex

acts as a GDP–GTP exchange factor for Rab1 [60]. This com-

plex appears to have a counterpart in Drosophila melanogaster
where Bru, the fly orthologue of the TRAPPII subunit

Trs120p, is also required for cleavage furrow ingression

during male meiotic cytokinesis [13,61]. In fission yeast and

plant cells, this role appears to require both the TRAPPII and

exocyst complexes that associate with vesicles in the cleavage

furrows [62,63]. These data suggest a possible conserved role

for Rab1 together with the TRAPPII complex in guiding mem-

brane addition to the cleavage furrow during cytokinesis that

in animal cells may be played by a single complex. The inves-

tigation of such possibilities will be the topic of future work.
4. Material and methods
4.1. Fly stocks and transgenes
Flies were raised at 258C by standard procedures. Oregon-R flies

were used as wild-type controls. omtz4144, Cog7z4495 and sauz2217

mutant strains were described previously [11,23,45] and were

from the C. Zuker collection [45]. UAS::GOLPH3-RNAi flies

were described previously [23] and were obtained from the

Vienna Drosophila RNAi Collection (VDRC line 46150) and

driven in spermatocytes using Bam-GAL4 [64]. The chromoso-

mal deficiencies Df(3R)ED10838, Df(3R)GC14, Df(3R)ED10845,

Df(3R)BSC861, Df(2L)Exel7010 and the P elements Rab1S147213

and Rab1e01287 were obtained from the Bloomington Drosophila

Stock Center (Indiana University, Bloomington, IN, USA).

Flies expressing GFP-Cog7 were described previously [11].

4.2. Molecular biology and rescue experiments
DNA sequencing of Rab1 protein coding exons was performed

from individuals carrying the omtz4144 mutation and the orig-

inal Zuker-background chromosome as described previously

[13]. To generate the YFP-Rab1 fusion construct, the CDS of

YFP was fused in frame to the N-terminus of the Rab1
cDNA. YFP-Rab1 was cloned into the pCaSpeR-sa that contains

the spermatocyte specific sa promoter and SV40 terminator (see
Szafer-Glusman et al. [47] for details on this vector). To generate

the RFP-Rab1 fusion construct, the cDNA of Rab1 was cloned

into pCasper4-tubulin [23] in frame with N-terminal mRFP

sequence. Transgenic flies were generated by P-element

mediated germline transformation, performed by Bestgene

Inc. (Chino Hills, CA, USA). YFP-Rab1 and RFP-Rab1 were

crossed into the omt/Df mutant background to test for pheno-

typic rescue of male sterility and meiotic cytokinesis failure.

RFP-Rab1, crossed into the omt/Df mutant background, was

used to test for phenotypic rescue of lethality. To obtain GST

fusion Rab1/Rab11 proteins, full-length cDNAs corresponding

to Drosophila Rab1 and Rab11 were cloned into a pGEX-6p-2 (GE

Healthcare), as described previously [23]. Male fertility tests

were performed in at least 10 vials by crossing five males of

either Oregon-R or mutant genotypes to 5 Oregon-R virgin

females and counting the number of larvae in each vial.

4.3. Protein expression and purification, antibody
generation

GST-full-length Drosophila Rab1 protein was expressed in

BL21-CodonPlus (DE3) cells (Invitrogen) and purified using

HiTrap affinity columns (GTtrap FF, and GSTtrap HP

columns, GE Healthcare) operated with AKTA 900 fast protein

liquid chromatography. Polyclonal antisera against the purified

GST-Rab1 protein were produced in rabbits and mice (Agro-Bio

Services; www.agro-bio.com). The anti-GST-Rab1 antisera

were first depleted of anti-GST antibodies and then affinity-

purified against GST-Rab1. The pET Directional TOPO

Expression kit (Thermofisher Scientific) was used

to obtain 6XHis-GOLPH3. 6XHis-GOLPH3 was purified

using cOmplete His-Tag Purification Resin (Roche). The fol-

lowing antibodies were used in the assays of this study:

mouse anti-Rab1 antibody S12085a and rabbit anti-Rab1

L12085a/169 antibody.

4.4. Western blotting and co-immunoprecipitation
Immunoblotting analysis of Rab1 protein was performed from

protein extracts of either adult testes or larval brains. Briefly,

30 adult testes or 20 brains from males of each genotype were

homogenized on ice in 100 ml Lysis buffer (10 mM Tris–HCl

pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 0.5% NP40, 1 mM

PMSF, 1� protease inhibitor cocktail) using a Dounce hom-

ogenizer. Samples were separated on Mini-protean

TGX precast gels (Bio-Rad) and blotted to PVDF membranes

(Bio-Rad). Membranes were blocked in Tris-buffered saline

(Sigma-Aldrich) with 0.05% Tween-20 (TBST) containing 5%

non-fat dry milk (Bio-Rad; Blotting Grade Blocker) for 3–4 h

at room temperature followed by incubation with primary

and secondary antibodies diluted in TBST. Co-IP experiments

from testes expressing RFP-tagged proteins were performed

using the RFP trap-A kits purchased from ChromoTek

(Planegg-Martinsried), following the protocol that was pre-

viously described [23]. To immunoprecipitate Drosophila
GOLPH3, we used the protocol described previously [23];

400 adult testes were homogenized in 500 ml of Lysis buffer

(see above) for 40 min on ice. The testis lysate was precleared

and divided into two. Fractions were incubated with either

5 mg of rabbit anti-GOLPH3 G49139/77 antibody or 5 mg of

rabbit pre-immune serum (G49139/1, from the same animal

before the immunization). After antibody incubation,

http://www.agro-bio.com
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immunoprecipitation was performed using the immunopreci-

pitation kit-Protein G (Roche) following the manufacturer’s

instructions. Primary antibodies, used for immunoblotting

were as follows: mouse anti-GOLPH3 S11047/1/56 (1 : 2500;

[23]) and rabbit anti-GOLPH3 (1 : 2500; G49139/77 [23]),

mouse monoclonal anti-a-tubulin (1 : 500; Sigma-Aldrich

T6199), mouse anti-Rab1 antibody S12085a (1 : 750; this

study), rabbit anti-Rab1 L12085a/169 (1 : 1000; this study),

rabbit anti-Garz ([53], gift of Dr A. Paululat, University

of Osnabruck, Germany, 1 : 500), mouse monoclonal

anti-RFP (1 : 1000; Chromotek, 6G6), mouse HRP anti-GFP

(1 : 1000; Vector-Lab) and mouse anti-6XHis (1 : 1000, Invitro-

gen). HRP-conjugated secondary antibodies (GE Healthcare)

were used at 1 : 5000. After incubation with the antibodies,

blots were washed in TBST and imaged using an ECL

detection kit (GE Healthcare).

4.5. GST pull-down assays
GST, GST-Rab1 and GST-Rab11 proteins were expressed in

bacteria and purified using Glutathione-Sepharose 4B beads

(GE Healthcare) following the manufacturer’s instructions.

At least 200 larval brains were homogenized for 40 min on

ice in 500 ml of Lysis buffer (25 mM Tris–HCl pH 7.4,

150 mM NaCl, 0.5% NP-40, 1 mM EDTA) with the addition

of protease and phosphatase inhibitor cocktails (Roche),

using a Dounce homogenizer. After clearing the lysates by

centrifugation, protein concentration of the supernatants

was determined by Bradford assay (Bio-Rad). GST pull-

down was performed by incubating larval brain lysates

with either GST, GST-Rab1 or GST-Rab11 (at the appropriate

concentration) bound to Glutathione-Sepharose 4B beads (GE

Healthcare), with gentle rotation, at 48C for 2 h. After rinsing

in ‘wash buffer’ (25 mM Tris–HCl pH 7.4, 150 mM NaCl, 1%

NP-40, 1 mM EDTA, protease and phosphatase inhibitors),

for three times, the beads were boiled in SDS sample

buffer, and separated by SDS-PAGE. The bound proteins

were analysed by western blotting (see above). Before immu-

noblotting, PVDF membranes were stained with Ponceau

(Sigma-Aldrich). Direct interaction between 6XHis-GOLPH3

and either GST-Rab1 or GST-Rab11 proteins was carried

out using the protocol described previously [4]. 6XHis-

GOLPH3 was incubated with GST or GST-Rab proteins for

5 h at 48C. 6XHis-GOLPH3 bound to ether GST, GST-Rab1

or GST-Rab11 was detected by western blotting analysis

using mouse anti-6XHis antibodies (1 : 1000). Guanosine

50-[b-thio]diphosphate trilithium salt (GDP-b-S) and

guanosine 50-[b,g-imido]triphosphate trisodium salt hydrate

(GMP-PNP) were purchased from Sigma-Aldrich.

4.6. Immunofluorescence staining and microscopy
Cytological preparations were made with brains and testes

from third instar larvae or S2 cells. To visualize Cog7-GFP or

RFP-Rab1, larval testes were fixed in 4% methanol-free formal-

dehyde (Polysciences, Warrington, PA, USA), as previously

described [9–11]. Following fixation, testes were incubated

with either mouse anti-GFP (3E6, Thermofisher Scientific), or

rat anti-RFP (ChromoTek), diluted 1 : 200 in phosphate buf-

fered saline (PBS). To visualize a-tubulin with either Rab1 or

GOLPH3, testes were fixed with methanol and formaldehyde

according to Frappaolo et al. [9]. For immunostaining of

larval testes and brains with other antibodies, preparations
were fixed using 3.7% formaldehyde in PBS and then squashed

in 60% acetic acid as previously described [9,65]. S2 cells used

in immunostaining experiments were harvested 72 h after

transfection for RNAi, and plated on glass coverslips for 1 h.

S2 cells were then fixed with 4% paraformaldehyde in PHEM

buffer (60 mM PEPES, 25 mM HEPES, 10 mM EGTA, 4 mM

MgCl2). Cells were then permeabilized in PBS with 1% Triton

X-100 and 3% BSA and washed three times with PBSTB (PBS

1� with 0.1% Triton X-100 and 1% BSA). Monoclonal anti-

bodies were used to stain a-tubulin (1 : 300; Sigma-Aldrich,

T6199), rabbit anti-lamin (dilution 1 : 50, [66]) and anti-

GFP (see above). Polyclonal antibodies were as follows:

rabbit anti-Lva (1 : 500; [50]), gift from O. Papoulas (University

of Texas at Austin); anti-GOLPH3 G49139/77 [23], diluted

1 : 1000; mouse anti-Rab1 antibody S12085a (1 : 750; this

study), rabbit anti-Rab1 L12085a/169 (1 : 1000; this study),

rabbit anti-Pav (1 : 750; [49]), rabbit anti-Garz (1 : 250; [53]),

gift from A. Paululat; rabbit and mouse anti-anillin (1 : 1000;

[17]), rabbit anti-myosin II (1 : 400; [48]) gift of R. Karess,

Paris Diderot University. F-actin in S2 cells was visualized

with Alexa Fluor 594 phalloidin (dilution 1 : 50, Invitrogen).

Secondary antibodies were: Alexa 555-conjugated anti-rabbit

IgG (1 : 300, Life Technologies), and FITC-conjugated anti-

mouse/anti-rat IgG (1 : 30, Jackson ImmunoResearch). All incu-

bations with primary antibodies (diluted in PBT containing 3%

BSA) were performed overnight at 48C. Incubations with sec-

ondary antibodies were performed at room temperature for

1 h. After immunostaining, samples were rinsed in PBS and

mounted in Vectashield mounting medium with DAPI (H-

1200, Vector Laboratories). Images were captured with a

charged-coupled device (CCD camera, Qimaging QICAM

Mono Fast 1394 Cooled), connected to a Nikon Axioplan epi-

fluorescence microscope equipped with an HBO 100-W

mercury lamp and 40� and 100�objectives. Spermatocyte

Golgi stacks were imaged at 0.5 mm steps through the whole

cell using an Olympus FV1000 confocal microscope with a

60� 1.4 NA lens. Golgi stack number and size were measured

using the Analyse Particles tools in IMAGEJ/Fiji. Super-

resolution images (figure 4) were captured at 218C on a

DeltaVision OMX V3 Blaze microscope (GE Healthcare, UK)

equipped with a 60�/1.42 oil UPlanSApo objective (Olympus).

The raw data were computationally reconstructed with

SOFTWORX 6.1 (GE Healthcare) using a Wiener filter setting of

0.006. Images from spermatocytes treated for PLA assays were

captured with a charged-coupled device (Axiocam 503 mono

CCD camera), and the ZEN2 software, connected to a Zeiss

Cell Observer Z1 microscope equipped with an HXP 120 V

inclusive built in power supply, lamp module and a 63�/1.4

objective. Images were analysed with IMAGEJ and processed in

PHOTOSHOP. The protein content of Golph3, Cog7-GFP or Rab1

in the Golgi membranes (figure 5) was measured using IMAGEJ

software. In detail, the Golgi compartment was demarcated

using the freehand selection tool and mean signal intensity of

the protein was measured in the selected compartment.

4.7. Proximity ligation assay
PLA was performed as described previously [9]. Preparations

fixed using 3.7% formaldehyde in PBS and then squashed in

60% acetic acid were blocked by immersing in the blocking

solution contained in the kit (Duolink In Situ PLA Probes,

Sigma-Aldrich), following the instructions provided by the

manufacturer. After blocking, samples were incubated with
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primary antibodies (rabbit anti-GOLPH3 G49139/77, diluted

1 : 1000; and mouse anti-Rab1 S12085a, 1 : 750) diluted in

the Duolink In Situ Antibody Diluent included in the kit (Duo-

link In Situ PLA Probes, Sigma-Aldrich) in a humid chamber

overnight at 48C. The PLA probe incubation and the detection

protocol were performed in accordance with the procedures

described in the Duolink In Situ-Fluorescence User Guide,

using the Duolink In Situ PLA Probes and Duolink In Situ Detec-

tion Reagents. Following the detection steps, specimens were

mounted in Vectashield Mounting Medium containing DAPI.

Quantification of the number of PLA signals per cell was

obtained using the Analyse Particles tools of the IMAGEJ soft-

ware. In detail, per each genotype, 20 cells were randomly

selected in the images collected from three experiments and

manually demarcated using the freehand selection tool. The

‘analyse particles’ command in IMAGEJ was then used to count

the number of dots in the selected area.

4.8. Yeast two-hybrid assay
The assay was performed using the B42/lexA system with

strain EGY48 (Mata his3 ura3 trp1 6lexAOP-LEU2; lexAOP-lacZ
reporter on plasmid pSH18-34) as the host strain [67]. This

strain was cotransformed with various combinations of bait

(pEG202) and prey (pJG4-5) plasmids carrying GOLPH3 and

Rab1 cDNAs or Rab1, Rab1S25N, Rab1Q70 L, Cog5 and Cog7
cDNAs. To assess two hybrid interaction, the strains were

spotted on 5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside

(X-GAL) selective synthetic plates containing either raffinose

(RAFF, prey not induced) or 2% galactose (GAL, prey

expressed) [68]. To quantify the yeast two-hybrid results, a

b-galactosidase assay was performed. Strains were first

grown in a selective medium containing galactose, then cells

were collected and protein extracts were prepared in order to

test b-galactosidase enzyme activity using o-nitrophenyl-D-

galactoside (ONPG) as a substrate, as described previously

[21]. For each sample, five independent transformants were

used and the assays were performed in duplicate to calculate

average b-galactosidase units and standard error.

4.9. Transmission electron microscopy
Male mid-pupae were dissected in PBS under a stereo light

microscope. Testes were isolated and fixed in 2.5% glutar-

aldehyde buffered in PBS overnight at 48C. Samples were

post-fixed with 1% osmium tetroxide in PBS for 1 h at 48C.

After careful rinsing, the material was dehydrated through

a graded series of ethanol, embedded with a mixture

of Epon-Araldite resin and polymerized at 608C for 48 h.

Ultrathin sections (65–75 nm) were cut with a Reichert ultra-

microtome equipped with a diamond knife, collected with

formvar-coated copper grids, and routinely stained with

uranyl acetate and lead citrate. TEM preparations were

observed with a FEI Tecnai G2 Spirit transmission electron

microscope operating at an accelerating voltage of 100 kV

and equipped with a Morada CCD camera (Olympus).

4.10. Drosophila cell culture and RNAi-mediated
interference

The DMel strain of Drosophila S2 cells (Invitrogen) was used

in all experiments. These cells were cultured in serum-free
medium (Express Five; GIBCO) supplemented with 1 mM

glutamine, penicillin and streptomycin at 258C. Generation

of all dsRNAs was performed as previously described [69].

Oligonucleotides used in this work are as follows:

Rab1.f1TAATACGACTCACTATAGGGAGAGTTATATC

AGCACAATCGGAGTGGA

Rab1.r1TAATACGACTCACTATAGGGAGATCAGCAGC

AACCGGATTTGGTGTTT

Rab1BKN22849for TAATACGACTCACTATAGGGAGA

TTCCGGATTCACAGATGACA

Rab1BKN22849rev TAATACGACTCACTATAGGGAG

AGTGTAGCCCTGGTTGGAAGA

For RNAi, cells were seeded at 1 � 106 cells in a six-well plate

the day before transfection. The day after, we used 20 mg of

dsRNA with 20 ml of TRANSFAST (Promega) and 1 ml of

medium mixed together for 15 min. The mix was then over-

laid on the cells for 1 h at 258C. After this treatment, 3 ml

of complete Express 5 medium was added to the cells.

RNA interference was performed for 72 h.

4.11. Statistical analysis
For all the immunofluorescence, differences between wild-

type and mutant cells were examined for statistical signifi-

cance using unpaired Student’s t-test with PRISM v. 6

(GraphPad). In western blotting analysis, the band intensities

were quantified using IMAGE LAB software (v. 4.0.1; Bio-Rad

Laboratories, Hercules, CA, USA). The representative results

from at least three independent experiments were analysed

using unpaired Student’s t-test with PRISM v. 6 (GraphPad).

For yeast two-hybrid experiments, differences between each

group were examined for statistical significance using

unpaired Student’s t-test using PRISM 6 (GraphPad). Data

are expressed as mean+ s.e.m.
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