9 research outputs found

    Formation of a protein corona on the surface of extracellular vesicles in blood plasma

    No full text
    In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in blood plasma. We isolated medium-sized nascent EVs of THP1 cells as well as of Optiprep-purified platelets, and incubated them in EV-depleted blood plasma from healthy subjects and from patients with rheumatoid arthritis. EVs were subjected to differential centrifugation, size exclusion chromatography, or density gradient ultracentrifugation followed by mass spectrometry. Plasma protein-coated EVs had a higher density compared to the nascent ones and carried numerous newly associated proteins. Interactions between plasma proteins and EVs were confirmed by confocal microscopy, capillary Western immunoassay, immune electron microscopy and flow cytometry. We identified nine shared EV corona proteins (ApoA1, ApoB, ApoC3, ApoE, complement factors 3 and 4B, fibrinogen alpha-chain, immunoglobulin heavy constant gamma 2 and gamma 4 chains), which appear to be common corona proteins among EVs, viruses and artificial nanoparticles in blood plasma. An unexpected finding of this study was the high overlap of the composition of the protein corona with blood plasma protein aggregates. This is explained by our finding that besides a diffuse, patchy protein corona, large protein aggregates also associate with the surface of EVs. However, while EVs with an external plasma protein cargo induced an increased expression of TNF-alpha, IL-6, CD83, CD86 and HLA-DR of human monocyte-derived dendritic cells, EV-free protein aggregates had no effect. In conclusion, our data may shed new light on the origin of the commonly reported plasma protein 'contamination' of EV preparations and may add a new perspective to EV research.11Ysciescopu

    Image-based and machine learning-guided multiplexed serology test for SARS-CoV-2

    No full text
    Funding Information: The authors thank the Minerva Institute (Helsinki, Finland) for providing utilities for the project, Prof. Perttu Hämäläinen (Aalto University, Finland) for providing the expertise of his group for the project, the FIMM High Throughput Biomedicine Unit for providing access to high-throughput robotics, the FIMM High Content Imaging and Analysis Unit for HC imaging and analysis (HiLIFE, University of Helsinki and Biocenter Finland; EuroBioImaging, ISIDORe partner), and the CSC – IT Center for Science, Finland, for computational resources. We acknowledge support from the LENDULET-BIOMAG grant (2018-342), from the European Regional Development Funds ( GINOP-2.3.2-15-2016-00006 , GINOP-2.3.2-15-2016-00026 , and GINOP-2.3.2-15-2016-00037 ), from the H2020-discovAIR ( 874656 ), from the H2020 ATTRACT-SpheroidPicker , and from the Chan Zuckerberg Initiative , Seed Networks for the HCA-DVP. The Finnish TEKES/BusinessFinland FiDiPro Fellow Grant 40294/13 (to V.P., O.K., L.P., and P.H.), grants awarded by the Academy of Finland (iCOIN- 336496 to O.K., V.P., and O.V.; 308613 to J.H.; 321809 to T.S.; 310552 to L.P.; 337530 to I.J.; and FIRI2020-337036 to FIMM-HCA, A.H., L.P., V.P., and P.H.), the EU H2020 VEO project (O.V.), and a Minerva Foundation for COVID-19 Research project grant (to V.P.) are also acknowledged. C.G. is funded by the Academy of Finland Flagship program, Finnish Center for Artificial Intelligence. OrthoSera Ltd. was funded by NKFIH grants ( 2020-1.1.6-JÖVŐ-2021-00010 and TKP2020-NKA-17 ). The authors thank Dora Bokor, PharmD, for proofreading the manuscript.We present a miniaturized immunofluorescence assay (mini-IFA) for measuring antibody response in patient blood samples. The method utilizes machine learning-guided image analysis and enables simultaneous measurement of immunoglobulin M (IgM), IgA, and IgG responses against different viral antigens in an automated and high-throughput manner. The assay relies on antigens expressed through transfection, enabling use at a low biosafety level and fast adaptation to emerging pathogens. Using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the model pathogen, we demonstrate that this method allows differentiation between vaccine-induced and infection-induced antibody responses. Additionally, we established a dedicated web page for quantitative visualization of sample-specific results and their distribution, comparing them with controls and other samples. Our results provide a proof of concept for the approach, demonstrating fast and accurate measurement of antibody responses in a research setup with prospects for clinical diagnostics.Peer reviewe

    Changes of placental syndecan-1 expression in preeclampsia and HELLP syndrome

    No full text
    Preeclampsia is characterized by maternal systemic anti-angiogenic and pro-inflammatory states. Syndecan-1 is a cell surface proteoglycan expressed by the syncytiotrophoblast, which plays an important role in angiogenesis and resolution of inflammation. Our aim was to examine placental syndecan-1 expression in preeclampsia with or without hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome. Placentas were obtained from women in the following groups: (1) late-onset preeclampsia (n = 8); (2) early-onset preeclampsia without (n = 7) and (3) with HELLP syndrome (n = 8); (4) preterm controls (n = 5); and (5) term controls (n = 9). Tissue microarrays (TMAs) were constructed from paraffin-embedded placentas. TMA slides were immunostained for syndecan-1 and evaluated using microscopy, virtual microscopy, and semi-automated image analysis. Maternal sera from patients with preeclampsia (n = 49) and controls (n = 32) were immunoassayed for syndecan-1. BeWo cells were treated with Forskolin or Latrunculin B or kept in ischemic conditions. SDC1 expression and syndecan-1 production were investigated with qRT-PCR, confocal microscopy, and immunoassays. Syndecan-1 was localized to the syncytiotrophoblast apical membrane in normal placentas. Syndecan-1 immunoscores were higher in late-onset preeclampsia (p = 0.0001) and early-onset preeclampsia with or without HELLP syndrome (p = 0.02 for both) than in controls. Maternal serum syndecan-1 concentration was lower in preeclampsia (median, 673 ng/ml; interquartile range, 459-1,161 ng/ml) than in controls (1,158 ng/ml; 622-1,480 ng/ml). SDC1 expression and syndecan-1 immunostainings in BeWo cells and syndecan-1 concentrations in supernatants increased during cell differentiation. Disruption of the actin cytoskeleton with Latrunculin B decreased syndecan-1 release, while ischemic conditions increased it. Syncytiotrophoblastic syndecan-1 expression depends on the differentiation of villous trophoblasts, and trophoblastic syndecan-1 release is decreased in preeclampsia and HELLP syndrome. This phenomenon may be related to the disturbed syncytiotrophoblastic cortical actin cytoskeleton and associated with maternal anti-angiogenic and pro-inflammatory states in these syndromes. © 2013 Springer-Verlag Berlin Heidelberg (outside the USA)
    corecore