349 research outputs found

    Betatron emission as a diagnostic for injection and acceleration mechanisms in laser-plasma accelerators

    Full text link
    Betatron x-ray emission in laser-plasma accelerators is a promising compact source that may be an alternative to conventional x-ray sources, based on large scale machines. In addition to its potential as a source, precise measurements of betatron emission can reveal crucial information about relativistic laser-plasma interaction. We show that the emission length and the position of the x-ray emission can be obtained by placing an aperture mask close to the source, and by measuring the beam profile of the betatron x-ray radiation far from the aperture mask. The position of the x-ray emission gives information on plasma wave breaking and hence on the laser non-linear propagation. Moreover, the measurement of the longitudinal extension helps one to determine whether the acceleration is limited by pump depletion or dephasing effects. In the case of multiple injections, it is used to retrieve unambiguously the position in the plasma of each injection. This technique is also used to study how, in a capillary discharge, the variations of the delay between the discharge and the laser pulse affect the interaction. The study reveals that, for a delay appropriate for laser guiding, the x-ray emission only occurs in the second half of the capillary: no electrons are injected and accelerated in the first half.Comment: 8 pages, 6 figures. arXiv admin note: text overlap with arXiv:1104.245

    Single shot phase contrast imaging using laser-produced Betatron x-ray beams

    Full text link
    Development of x-ray phase contrast imaging applications with a laboratory scale source have been limited by the long exposure time needed to obtain one image. We demonstrate, using the Betatron x-ray radiation produced when electrons are accelerated and wiggled in the laser-wakefield cavity, that a high quality phase contrast image of a complex object (here, a bee), located in air, can be obtained with a single laser shot. The Betatron x-ray source used in this proof of principle experiment has a source diameter of 1.7 microns and produces a synchrotron spectrum with critical energy E_c=12.3 +- 2.5 keV and 10^9 photons per shot in the whole spectrum.Comment: 3 pages, 3 figure

    Demonstration of the synchrotron-type spectrum of laser-produced Betatron radiation

    Get PDF
    Betatron X-ray radiation in laser-plasma accelerators is produced when electrons are accelerated and wiggled in the laser-wakefield cavity. This femtosecond source, producing intense X-ray beams in the multi kiloelectronvolt range has been observed at different interaction regime using high power laser from 10 to 100 TW. However, none of the spectral measurement performed were at sufficient resolution, bandwidth and signal to noise ratio to precisely determine the shape of spectra with a single laser shot in order to avoid shot to shot fluctuations. In this letter, the Betatron radiation produced using a 80 TW laser is characterized by using a single photon counting method. We measure in single shot spectra from 8 to 21 keV with a resolution better than 350 eV. The results obtained are in excellent agreement with theoretical predictions and demonstrate the synchrotron type nature of this radiation mechanism. The critical energy is found to be Ec = 5.6 \pm 1 keV for our experimental conditions. In addition, the features of the source at this energy range open novel perspectives for applications in time-resolved X-ray science.Comment: 5 pages, 4 figure

    Monotherapy with pixantrone in histologically confirmed relapsed or refractory aggressive B-cell non-Hodgkin lymphoma: post-hoc analyses from a phase III trial.

    Get PDF
    This post hoc analysis of a phase 3 trial explored the effect of pixantrone in patients (50 pixantrone, 47 comparator) with relapsed or refractory aggressive B-cell non-Hodgkin lymphoma (NHL) confirmed by centralized histological review. Patients received 28-d cycles of 85 mg/m(2) pixantrone dimaleate (equivalent to 50 mg/m(2) in the approved formulation) on days 1, 8 and 15, or comparator. The population was subdivided according to previous rituximab use and whether they received the study treatment as 3rd or 4th line. Median number of cycles was 4 (range, 2-6) with pixantrone and 3 (2-6) with comparator. In 3rd or 4th line, pixantrone was associated with higher complete response (CR) (23·1% vs. 5·1% comparator, P = 0·047) and overall response rate (ORR, 43·6% vs. 12·8%, P = 0·005). In 3rd or 4th line with previous rituximab (20 pixantrone, 18 comparator), pixantrone produced better ORR (45·0% vs. 11·1%, P = 0·033), CR (30·0% vs. 5·6%, P = 0·093) and progression-free survival (median 5·4 vs. 2·8 months, hazard ratio 0·52, 95% confidence interval 0·26-1·04) than the comparator. Similar results were found in patients without previous rituximab. There were no unexpected safety issues. Pixantrone monotherapy is more effective than comparator in relapsed or refractory aggressive B-cell NHL in the 3rd or 4th line setting, independently of previous rituximab

    The dynamics of the non-heme iron in bacterial reaction centers from Rhodobacter sphaeroides

    Get PDF
    AbstractWe investigate the dynamical properties of the non-heme iron (NHFe) in His-tagged photosynthetic bacterial reaction centers (RCs) isolated from Rhodobacter (Rb.) sphaeroides. Mössbauer spectroscopy and nuclear inelastic scattering of synchrotron radiation (NIS) were applied to monitor the arrangement and flexibility of the NHFe binding site. In His-tagged RCs, NHFe was stabilized only in a high spin ferrous state. Its hyperfine parameters (IS=1.06±0.01mm/s and QS=2.12±0.01mm/s), and Debye temperature (θD0~167K) are comparable to those detected for the high spin state of NHFe in non-His-tagged RCs. For the first time, pure vibrational modes characteristic of NHFe in a high spin ferrous state are revealed. The vibrational density of states (DOS) shows some maxima between 22 and 33meV, 33 and 42meV, and 53 and 60meV and a very sharp one at 44.5meV. In addition, we observe a large contribution of vibrational modes at low energies. This iron atom is directly connected to the protein matrix via all its ligands, and it is therefore extremely sensitive to the collective motions of the RC protein core. A comparison of the DOS spectra of His-tagged and non-His-tagged RCs from Rb. sphaeroides shows that in the latter case the spectrum was overlapped by the vibrations of the heme iron of residual cytochrome c2, and a low spin state of NHFe in addition to its high spin one. This enabled us to pin-point vibrations characteristic for the low spin state of NHFe
    corecore