4 research outputs found

    Spatiotemporal Dynamics of Dilute Red Blood Cell Suspensions in Low-Inertia Microchannel Flow

    Get PDF
    Microfluidic technologies are commonly used for the manipulation of red blood cell (RBC) suspensions and analyses of flow-mediated biomechanics. To enhance the performance of microfluidic devices, understanding the dynamics of the suspensions processed within is crucial. We report novel, to our knowledge, aspects of the spatiotemporal dynamics of RBC suspensions flowing through a typical microchannel at low Reynolds number. Through experiments with dilute RBC suspensions, we find an off-center two-peak (OCTP) profile of cells contrary to the centralized distribution commonly reported for low-inertia flows. This is reminiscent of the well-known β€œtubular pinch effect,” which arises from inertial effects. However, given the conditions of negligible inertia in our experiments, an alternative explanation is needed for this OCTP profile. Our massively parallel simulations of RBC flow in real-size microfluidic dimensions using the immersed-boundary-lattice-Boltzmann method confirm the experimental findings and elucidate the underlying mechanism for the counterintuitive RBC pattern. By analyzing the RBC migration and cell-free layer development within a high-aspect-ratio channel, we show that such a distribution is co-determined by the spatial decay of hydrodynamic lift and the global deficiency of cell dispersion in dilute suspensions. We find a cell-free layer development length greater than 46 and 28 hydraulic diameters in the experiment and simulation, respectively, exceeding typical lengths of microfluidic designs. Our work highlights the key role of transient cell distribution in dilute suspensions, which may negatively affect the reliability of experimental results if not taken into account

    Specific features of ore formation of Barun-Shiveinskoe tungsten deposit (Eastern Transbaikalia)

    Get PDF
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдования состоит Π² нСобходимости Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΡ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ ΡΡ‹Ρ€ΡŒΠ΅Π²ΠΎΠΉ Π±Π°Π·Ρ‹ России. ВосточноС Π—Π°Π±Π°ΠΉΠΊΠ°Π»ΡŒΠ΅ являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΡ‚Π°Ρ€Π΅ΠΉΡˆΠΈΡ… Π³ΠΎΡ€Π½ΠΎΡ€ΡƒΠ΄Π½Ρ‹Ρ… Ρ€Π΅Π³ΠΈΠΎΠ½ΠΎΠ² страны. Π‘Π°Ρ€ΡƒΠ½-ШивСинскоС мСстороТдСниС относится ΠΊ Ρ€Ρ‚ΡƒΡ‚Π½ΠΎ-ΡΡƒΡ€ΡŒΠΌΡΠ½ΠΎ-Π²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌΠΎΠ²ΠΎΠΉ Ρ€ΡƒΠ΄Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. Для Ρ€Π΅Π³ΠΈΠΎΠ½Π° остро стоит вопрос ΠΎ поисках ΠΈ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΈ Π½ΠΎΠ²Ρ‹Ρ… Ρ€ΡƒΠ΄Π½Ρ‹Ρ… мСстороТдСний. Для ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠ³ΠΎ выполнСния Ρ‚Π°ΠΊΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ Π΄Π°Π½Π½Ρ‹Π΅ Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ изучСния ΡƒΠΆΠ΅ извСстных Ρ€ΡƒΠ΄Π½Ρ‹Ρ… мСстороТдСний, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½Π°ΡƒΡ‡Π½ΠΎ обоснованных ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π² поиска Ρ€ΡƒΠ΄Π½Ρ‹Ρ… мСстороТдСний ΠΈ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π° орудСнСния. К числу Ρ‚Π°ΠΊΠΈΡ… Π΄Π°Π½Π½Ρ‹Ρ… относится ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ источников рудоносных расплавов ΠΈ условий формирования мСстороТдСний Ρ€Ρ‚ΡƒΡ‚Π½ΠΎ-ΡΡƒΡ€ΡŒΠΌΡΠ½ΠΎ-Π²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌΠΎΠ²ΠΎΠΉ Ρ€ΡƒΠ΄Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. ЦСлью исслСдования являСтся Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ участия Π² Ρ€ΡƒΠ΄ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… рудоносных источников с Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ характСристиками Π½Π° основании Π΄Π°Π½Π½Ρ‹Ρ… ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠ½ΠΎΠ³ΠΎ состава кислорода рудоносного ΠΊΠ²Π°Ρ€Ρ†Π° ΠΈ сСры ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° элСмСнтного состава ΠΊΠ²Π°Ρ€Ρ†-Π²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌΠΈΡ‚ΠΎΠ²Ρ‹Ρ… Ρ€ΡƒΠ΄ Π‘Π°Ρ€ΡƒΠ½-ШивСинского мСстороТдСния с элСмСнтным составом Ρ€ΡƒΠ΄ ΠΊΠ²Π°Ρ€Ρ†-Π²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌΠΈΡ‚ΠΎΠ²Ρ‹Ρ… Ρ€ΡƒΠ΄ Π²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌΠΎΠ²Ρ‹Ρ… мСстороТдСний Восточного Π—Π°Π±Π°ΠΉΠΊΠ°Π»ΡŒΡ. ΠžΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠΌ исслСдования являСтся Π‘Π°Ρ€ΡƒΠ½-ШивСинскоС Π²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌΠΎΠ²ΠΎΠ΅ мСстороТдСниС, располоТСнноС Π² Восточном Π—Π°Π±Π°ΠΉΠΊΠ°Π»ΡŒΠ΅. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Для опрСдСлСния элСмСнтного состав ΠΏΠΎΡ€ΠΎΠ΄ использовался рСнтгСнфлуорСсцСнтный ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈ стандартный химичСский Π°Π½Π°Π»ΠΈΠ· Π² ГСологичСском институтС Бибирского отдСлСния Российской АкадСмии Наук (Π“Π˜Π БО РАН, Π³. Π£Π»Π°Π½-Удэ). ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠ½ΠΎΠ³ΠΎ состава кислорода ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ Π² аналитичСском Ρ†Π΅Π½Ρ‚Ρ€Π΅ (Π“Π˜Π БО РАН, Π³. Π£Π»Π°Π½-Удэ) с использованиСм установки MIR 10-30 систСмы Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ Π½Π°Π³Ρ€Π΅Π²Π° с Π»Π°Π·Π΅Ρ€ΠΎΠΌ CO2 ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ 100 Π²Π°Ρ‚Ρ‚ ΠΈ Π΄Π»ΠΈΠ½ΠΎΠΉ Π²ΠΎΠ»Π½Ρ‹ 10,6 ΠΌΠΊΠΌ Π² инфракрасной области, Π² присутствии Ρ€Π΅Π°Π³Π΅Π½Ρ‚Π° BrF5 ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Z.D. Sharp (1990). Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ состава ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ² ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ Π² Π“Π˜Π БО РАН Π½Π° растровом элСктронном микроскопС LEO-1430VP с энСргодиспСрсионным спСктромСтром INCA Energy 350 (OxfordInstruments) ΠΏΡ€ΠΈ ΡƒΡΠΊΠΎΡ€ΡΡŽΡ‰Π΅ΠΌ напряТСнии 20 ΠΊΠ’, Ρ‚ΠΎΠΊΠ΅ Π·ΠΎΠ½Π΄Π° мСньшС 0,5 Π½A, Ρ€Π°Π·ΠΌΠ΅Ρ€Π΅ Π·ΠΎΠ½Π΄Π° 0,1 ΠΌΠΊΠΌ. Π’ Ρ€Π΅ΠΆΠΈΠΌΠ΅ Π°Π½Π°Π»ΠΈΠ·Π° врСмя Π½Π°Π±ΠΎΡ€Π° спСктров составило 50 с. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠ½ΠΎΠ³ΠΎ состава сСры ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π² Ρ†Π΅Π½Ρ‚Ρ€Π΅ ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ пользования многоэлСмСнтных ΠΈ ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠ½Ρ‹Ρ… исслСдований БО РАН (Π³. Новосибирск). Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π˜Π·ΠΎΡ‚ΠΎΠΏΠ½Ρ‹ΠΉ состав кислорода Π²ΠΎ Ρ„Π»ΡŽΠΈΠ΄Π΅ Π² равновСсии с ΠΊΠ²Π°Ρ€Ρ†Π΅ΠΌ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ этапа ΠΏΡ€ΠΈ 210-150 Β°Π‘ составляСт 4,25-14,22 ‰, Ρ‡Ρ‚ΠΎ соотвСтствуСт Π²ΠΎΠ΄Π½ΠΎΠΌΡƒ Ρ„Π»ΡŽΠΈΠ΄Ρƒ магматичСской ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹. УстановлСн ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠ½Ρ‹ΠΉ состав сСры ΠΊΠΈΠ½ΠΎΠ²Π°Ρ€ΠΈ, Π·Π°ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ€ΡƒΠ΄Π½ΠΎΠΉ стадии формирования мСстороТдСния, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ ΠΌΠ°Π½Ρ‚ΠΈΠΉΠ½Ρ‹ΠΌ значСниям. Π£Π·ΠΊΠΈΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ сСры ΠΊΠΈΠ½ΠΎΠ²Π°Ρ€ΠΈ [delta] 34S, ‰ CDT ΠΎΡ‚ -3,5 Π΄ΠΎ -4,5 ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° ΠΈΡ… Π΅Π΄ΠΈΠ½Ρ‹ΠΉ источник. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π½Π° мСстороТдСнии ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Ρ€Π΅Π΄ΠΊΠΈΡ… ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ² ΠΊΠΈΠ½ΠΎΠ²Π°Ρ€ΠΈ (ΠΌΠ΅Ρ‚Π°Ρ†ΠΈΠ½ΠΎΠ±Π°Ρ€ΠΈΡ‚, ΠΊΠΎΡ€Π΄Π΅Ρ€ΠΎΠΈΡ‚), ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ…ΡΡ Π² Π·ΠΎΠ½Π°Ρ… окислСния Ρ€Ρ‚ΡƒΡ‚Π½Ρ‹Ρ… мСстороТдСний ΠΏΡ€ΠΈ Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… условиях. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ ΠΈΡ… элСмСнтный состав. Π’ ΠΊΠ²Π°Ρ€Ρ†-Π²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌΠΈΡ‚ΠΎΠ²Ρ‹Ρ… Ρ€ΡƒΠ΄Π°Ρ… Π²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌΠΎΠ²Ρ‹Ρ… мСстороТдСний Восточного Π—Π°Π±Π°ΠΉΠΊΠ°Π»ΡŒΡ, Π² Ρ‚ΠΎΠΌ числС Π‘Π°Ρ€ΡƒΠ½-ШивСинского, выявлСна тСсная коррСляционная связь (r - 0,53-0,96) с рядом элСмСнтов (As, Ta, Nb, Hf), ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ ΠΎΠ± Π΅Π΄ΠΈΠ½Ρ‹Ρ… источниках ΠΈΡ… формирования. Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€ΡƒΠ΄ Π‘Π°Ρ€ΡƒΠ½-ШивСинского мСстороТдСния ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΠ»ΠΎ ΠΈΠ· Ρ€Π°Π·Π½ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²Ρ‹Ρ… рудоносных источников. ΠžΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌΠΈΡ‚ΠΎΠ² происходило Π·Π° счСт ΠΊΠΎΡ€ΠΎΠ²ΠΎΠ³ΠΎ источника, Ρ€Ρ‚ΡƒΡ‚ΠΈ - ΠΌΠ°Π½Ρ‚ΠΈΠΉΠ½ΠΎΠ³ΠΎ.The relevance of the study is in the need to expand the mineral resource base of Russia. Eastern Transbaikalia is one of the oldest mining regions of the country. Barun-Shiveinskoe field is mercury-antimony-tungsten ore formations. For the region, there is an urgent need to search for and discover new ore deposits. For successful completion of such a task, the data are needed from a detailed study of already known ore deposits, which can be used to develop scientifically reasonable criteria for searching for ore deposits and forecasting mineralisation. Such data includes determination of sources of ore-bearing melts and conditions of formation of mercury-antimony-tungsten ore formation deposits. The aim of the study is to prove participation in ore formation of several ore-bearing sources with different characteristics based on the data of isotopic composition of oxygen of ore-bearing quartz and sulphur sulfides, as well as comparative analysis of elemental composition of quartz-wolframite ores of Barun-Shiveinskoe deposit with quartz-wolframite ores of tungsten deposits in Eastern Transbaikalia. Object of the study is Barun-Shiveinskoe tungsten deposit located in Eastern Transbaikalia. Methods. To determine the elemental composition of rocks, the X-ray fluorescence method and standard chemical analysis were used at the Geological Institute of the Siberian Branch of the Russian Academy of Sciences (GIN SB RAS, Ulan-Ude). Oxygen isotopic composition was determined at the analytical centre (GIN SO RAS, Ulan-Ude) using a MIR 10-30 laser heating system with a 100 Watt CO2 laser and a 10,6 [mu]m wavelength in the infrared region, in the presence of the BrF5 reagent using the Z.D. Sharp method (1990). Mineral composition study was carried out in GIN SO RAS on the LEO-1430VP scanning electron microscope with the INCA Energy 350 energy dispersion spectrometer (Oxford Instruments) at an accelerating voltage of 20 kV, probe current is less than 0,5 nA, probe size is 0,1 Β΅m. In the analysis mode, the spectral set time was 50 s. Isotope composition of sulphur sulfides study was carried out at the collective use centre for multi-element and isotope studies of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk). Results. The isotopic composition of oxygen in the fluid was determined in equilibrium with quartz of the productive stage at 210-150 Β°C, varying from 4,25 to 14,22 ‰, which corresponds to aqueous fluid of magmatic nature. The isotopic composition of sulfur cinnabar, the final ore stage of the deposit formation, corresponding to mantle values, has been established. A narrow interval of [delta] 34S, ‰ CDT values for cinnabar sulphur from -3,5 to to -4,5 indicates a single source. For the first time, a rare cinnabaric minerals (metacinobarite, corderoite) formed in the oxidation zones of mercury deposits under low-temperature conditions were identified at the deposit. Their elemental composition was determined. In quartz-wolframite ores from tungsten deposits in Eastern Transbaikalia, including Barun-Shiveinskoe, a close correlation relation (r - 0,53-0,96) with a number of elements (As, Ta, Nb, Hf) was identified, indicating common sources of their formation. Ore formation at Barun-Shiveinskoe deposit was carried out from different levels of ore-bearing sources. Wolframites were formed from a crust source and mercury - from a mantle one
    corecore