12,316 research outputs found

    Analysis of the contributions of three-body potentials in the equation of state of 4He

    Get PDF
    The effect of three-body interatomic contributions in the equation of state of 4He are investigated. A recent two-body potential together with the Cohen and Murrell (Chem. Phys. Lett. 260, 371 (1996)) three-body potential are applied to describe bulk helium. The triple-dipole dispersion and exchange energies are evaluated subjected only to statistical uncertainties. An extension of the diffusion Monte Carlo method is applied in order to compute very small energies differences. The results show how the three-body contributions affects the ground-state energy, the equilibrium, melting and freezing densities.Comment: 18 pages, 3 figures, 4 table

    WISE view of Narrow-Line Seyfert 1 galaxies: mid-infrared color and variability

    Full text link
    We present the color and flux variability analysis at 3.4 {\mu}m (W1-band) and 4.6 {\mu}m (W 2-band) of 492 narrow-line Seyfert 1 (NLSy1) galaxies using archival data from the Wide-field Infrared Survey Explorer (WISE). In the WISE color-color, (W1 - W2) versus (W2 - W3) diagram, ~58% of the NLSy1 galaxies of our sample lie in the region occupied by the blazar category of active galactic nuclei (AGN). The mean W1 - W2 color of candidate variable NLSy1 galaxies is 0.99±0.180.99 \pm 0.18 mag. The average amplitude of variability is 0.11±0.070.11 \pm 0.07 mag in long-term (multi-year) with no difference in variability between W1 and W2-bands. The W1 - W2 color of NLSy1 galaxies is anti-correlated with the relative strength of [O III] to H{\beta}, strongly correlated with continuum luminosity, black hole mass, and Eddington ratio. The long-term amplitude of variability shows weak anti-correlation with the Fe II strength, continuum luminosity and Eddington ratio. A positive correlation between color as well as the amplitude of variability with the radio power at 1.4 GHz was found for the radio-detected NLSy1 galaxies. This suggests non-thermal synchrotron contribution to the mid-infrared color and flux variability in radio-detected NLSy1 galaxies.Comment: 10 pages; Accepted for publication in MNRA

    The dynamics of loop formation in a semiflexible polymer

    Get PDF
    The dynamics of loop formation by linear polymer chains has been a topic of several theoretical/experimental studies. Formation of loops and their opening are key processes in many important biological processes. Loop formation in flexible chains has been extensively studied by many groups. However, in the more realistic case of semiflexible polymers, not much results are available. In a recent study (K. P. Santo and K. L. Sebastian, Phys. Rev. E, \textbf{73}, 031293 (2006)), we investigated opening dynamics of semiflexible loops in the short chain limit and presented results for opening rates as a function of the length of the chain. We presented an approximate model for a semiflexible polymer in the rod limit, based on a semiclassical expansion of the bending energy of the chain. The model provided an easy way to describe the dynamics. In this paper, using this model, we investigate the reverse process, i.e., the loop formation dynamics of a semiflexible polymer chain by describing the process as a diffusion-controlled reaction. We perform a detailed multidimensional analysis of the problem and calculate closing times for a semiflexible chain which leads to results that are physically expected. Such a multidimensional analysis leading to these results does not seem to exist in the literature so far.Comment: 37 pages 4 figure

    Reconstructing the geometric structure of a Riemannian symmetric space from its Satake diagram

    Full text link
    The local geometry of a Riemannian symmetric space is described completely by the Riemannian metric and the Riemannian curvature tensor of the space. In the present article I describe how to compute these tensors for any Riemannian symmetric space from the Satake diagram, in a way that is suited for the use with computer algebra systems. As an example application, the totally geodesic submanifolds of the Riemannian symmetric space SU(3)/SO(3) are classified. The submission also contains an example implementation of the algorithms and formulas of the paper as a package for Maple 10, the technical documentation for this implementation, and a worksheet carrying out the computations for the space SU(3)/SO(3) used in the proof of Proposition 6.1 of the paper.Comment: 23 pages, also contains two Maple worksheets and technical documentatio

    Pressure induced electronic topological transition in Sb2S3

    Full text link
    Pressure induced electronic topological transitions in the wide band gap semiconductor Sb2S3 (Eg = 1.7-1.8 eV) with similar crystal symmetry (SG: Pnma) to its illustrious analog, Sb2Se3, has been studied using Raman spectroscopy, resistivity and the available literature on the x-ray diffraction studies. In this report, the vibrational and the transport properties of Sb2S3 have been studied up to 22 GPa and 11 GPa, respectively. We observed the softening of phonon modes Ag(2), Ag(3) and B2g and a sharp anomaly in their line widths at 4 GPa. The resistivity studies also shows an anomaly around this pressure. The changes in resistivity as well as Raman line widths can be ascribed to the changes in the topology of the Fermi surface which induces the electron-phonon and the strong phonon-phonon coupling, indicating a clear evidence of the electronic topological transition (ETT) in Sb2S3. The pressure dependence of a/c ratio plot obtained from the literature showed a minimum at ~ 5 GPa, which is consistent with our high pressure Raman and resistivity results. Finally, we give the plausible reasons for the non-existence of a non-trivial topological state in Sb2S3 at high pressures.Comment: 24 pages, 6 Figures, 2 tables submitted for publicatio

    Digital electric field induced switching of plasmonic nanorods using an electro-optic fluid fiber

    Full text link
    We demonstrate the digital electric field induced switching of plasmonic nanorods between 1 and 0 orthogonal aligned states using an electro-optic fluid fiber component. We show by digitally switching the nanorods, that thermal rotational diffusion of the nanorods can be circumvented, demonstrating an approach to achieve submicrosecond switching times. We also show, from an initial unaligned state, that the nanorods can be aligned into the applied electric field direction in 110 nanoseconds. The high-speed digital switching of plasmonic nanorods integrated into an all-fiber optical component may provide novel opportunities for remote sensing and signaling applications

    Methane emission from rice field and mitigation options -Winter School on Impact of Climate Change on Indian Marine Fisheries held at CMFRI, Cochin 18.1.2008 to 7.2.2008

    Get PDF
    Methane gas is a valuable energy resource and the leading anthropogenic contributor to global warming after carbon dioxide. Methane accounts for 17 percent of the enhanced greenhouse effect (IPCC, 1996). Over the last two centuries, methane’s concentration in the atmosphere has more than doubled from about 700 parts per billion by volume (ppbv) in pre-industrial times to 1,730 ppbv in 1997 (IPCC, 1996). The global tropospheric CH4 growth rate averaged over the period 1992 through 1998 is about 4.9 ppb per year, corresponding to an average annual increase in atmospheric burden of 14 Tg
    corecore