32 research outputs found

    Development of an extended 2D porcine muscle cell culture system and impact of growth promoters on muscle’s innate immune resistance

    Get PDF
    Skeletal muscle comprises about half of the body weight in mammals and its diverse roles in metabolism and innate immune functions makes cultured muscle as a useful tool in biomedical research. In this thesis, some of the major technical obstacles in porcine primary muscle cell cultures such as inadequate differentiation of myoblasts into myotubes and the premature detachment of the formed myotubes have been overcome with the achievement of high differentiation and myotube fusion rate of over 85% along with prolonged maintenance of myotubes in excess of 70 days. Myosin heavy chain (MyHC) expression profile of differentiated myotubes recapitulated adult muscle fibres and displayed phenotypic plasticity of gene expression in response to different media. Growth factor ractopamine (Ract) treatment (1h and 6h) of myotubes followed with subsequent bioinformatics analysis of a stable isotope labelling by amino acids in cell culture (SILAC) based proteomics study suggested differential expression of proteins associated with anti-viral innate immune response and increased protein accretion. Porcine muscle cells were infected with influenza A viruses to evaluate their immune function. Porcine muscle cells expressed influenza virus sialic acid α-2,3 and α-2,6 receptors and were fully permissive to influenza virus infection. Myoblasts produced more virus particles than myotubes. Muscle cells expressed the pro-inflammatory genes tumor necrosis factor alpha (TNF-α) and antiviral gene Mx-1 and the infected cells had elevated caspase 3/7 activity to indicate apoptosis. However, myotubes pre-treated with Ract appeared to confer no reduction in influenza virus output. Evidence presented herein suggests that the functional myotubes developed by this work can be used as a tool to study the molecular mechanisms of growth and innate immune pathways in muscle

    The management of risk and investment in cell therapy process development: a case study for neurodegenerative disease

    Get PDF
    Cell-based therapies must achieve clinical efficacy and safety with reproducible and cost-effective manufacturing. This study addresses process development issues using the exemplar of a human pluripotent stem cell-based dopaminergic neuron cell therapy product. Early identification and correction of risks to product safety and the manufacturing process reduces the expensive and time-consuming bridging studies later in development. A New Product Introduction map was used to determine the developmental requirements specific to the product. Systematic Risk Analysis is exemplified here. Expected current valuebased prioritization guides decisions about the sequence of process studies and whether and if an early abandonment of further research is appropriate. The application of the three tools enabled prioritization of the development studie

    Chicken and duck myotubes are highly susceptible and permissive to influenza virus infection

    Get PDF
    Skeletal muscle, at 30 to 40% of body mass, is the most abundant soft tissue in the body. Besides its primary function in movement and posture, skeletal muscle is a significant innate immune organ with the capacity to produce cytokines and chemokines and respond to proinflammatory cytokines. Little is known about the role of skeletal muscle during systemic influenza A virus infection in any host and particularly avian species. Here we used primary chicken and duck multinucleated myotubes to examine their susceptibility and innate immune response to influenza virus infections. Both chicken and duck myotubes expressed avian and human sialic acid receptors and were readily susceptible to low-pathogenicity (H2N3 A/mallard duck/England/7277/06) and high-pathogenicity (H5N1 A/turkey/England/50-92/91 and H5N1 A/turkey/Turkey/1/05) avian and human H1N1 (A/USSR/77) influenza viruses. Both avian host species produced comparable levels of progeny H5N1 A/turkey/Turkey/1/05 virus.Notably, the rapid accumulation of viral nucleoprotein and matrix (M) gene RNA in chicken and duck myotubes was accompanied by extensive cytopathic damage with marked myotube apoptosis (widespread microscopic blebs, caspase 3/7 activation, and annexin V binding at the plasma membrane). Infected chicken myotubes produced significantly higher levels of proinflammatory cytokines than did the corresponding duck cells. Additionally, in chicken myotubes infected with H5N1 viruses, the induction of interferon beta (IFN-beta) and IFN-inducible genes, including the melanoma differentiation-associated protein 5 (MDA-5) gene, was relatively weak compared to infection with the corresponding H2N3 virus. Our findings highlight that avian skeletal muscle fibers are capable of productive influenza virus replication and are a potential tissue source of infection

    18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells

    Get PDF
    Background: One requisite of quantitative reverse transcription PCR (qRT-PCR) is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA), ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) (ATP5G1)] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes. Results: The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs), pig tracheal epithelial cells (PTECs), and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells. Conclusions: Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells) infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH) were highly affected by influenza virus infection and hence are not reliable as reference genes for RNA normalisation

    18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells

    Get PDF
    Background: One requisite of quantitative reverse transcription PCR (qRT-PCR) is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA), ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) (ATP5G1)] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes. Results: The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs), pig tracheal epithelial cells (PTECs), and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells. Conclusions: Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells) infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH) were highly affected by influenza virus infection and hence are not reliable as reference genes for RNA normalisation

    8S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells

    Get PDF
    Abstract Background: One requisite of quantitative reverse transcription PCR (qRT-PCR) is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA), ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) (ATP5G1)] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes. Results: The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs), pig tracheal epithelial cells (PTECs), and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells. Conclusions: Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells) infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH) were highly affected by influenza virus infection and hence are not reliable as reference genes for RNA normalisation

    A Multicenter Evaluation of Different Chemotherapy Regimens in Older Adults With Head and Neck Squamous Cell Carcinoma Undergoing Definitive Chemoradiation

    Get PDF
    PURPOSE: The number of older adults with head-and-neck squamous cell carcinoma (HNSCC) is increasing, and treatment of these patients is challenging. Although cisplatin-based chemotherapy concomitantly with radiotherapy is considered standard regimen for patients with locoregionally advanced HNSCC, there is substantial real-world heterogeneity regarding concomitant chemotherapy in older HNSCC patients. METHODS: The XXX study is an international multicenter cohort study including older (≥65 years) HNSCC patients treated with definitive radiotherapy at 13 academic centers in the United States and Europe. Here, patients with concomitant chemoradiation were analyzed regarding overall survival (OS) and progression-free survival (PFS) using Kaplan-Meier analyses, while Fine-Gray competing risks regressions were performed regarding the incidence of locoregional failures (LRFs) and distant metastases (DMs). RESULTS: Six hundred ninety-seven patients with a median age of 71 years were included in this analysis. Single-agent cisplatin was the most common chemotherapy regimen (n=310; 44%), followed by cisplatin plus 5-fluorouracil (n=137; 20%), carboplatin (n=73; 10%), and mitomycin c plus 5-fluorouracil (n=64; 9%). Carboplatin-based regimens were associated with diminished PFS (HR=1.39 [1.03-1.89], p.05). Median cumulative dose of cisplatin was 180 mg/m2 (IQR, 120-200 mg/m2). Cumulative cisplatin doses ≥200 mg/m2 were associated with increased OS (HR=0.71 [0.53-0.95], p=.02), PFS (HR=0.66 [0.51-0.87], p=.003), and lower incidence of LRFs (SHR=0.50 [0.31-0.80], p=.004). Higher cumulative cisplatin doses remained an independent prognostic variable in the multivariate regression analysis for OS (HR=0.996 [0.993-0.999], p=.009). CONCLUSIONS: Single-agent cisplatin can be considered as the standard chemotherapy regimen for older HNSCC patients who can tolerate cisplatin. Cumulative cisplatin doses are prognostically relevant also in older HNSCC patients

    Extended 2D myotube culture recapitulates postnatal fibre type plasticity

    Get PDF
    Background: The traditional problems of performing skeletal muscle cell cultures derived from mammalian or avian species are limited myotube differentiation, and transient myotube persistence which greatly restricts the ability of myotubes to undergo phenotypic maturation. We report here on a major technical breakthrough in the establishment of a simple and effective method of extended porcine myotube cultures (beyond 50 days) in two-dimension (2D) that recapitulates key features of postnatal fibre types. Results: Primary porcine muscle satellite cells (myoblasts) were isolated from the longissimus dorsi of 4 to 6 weeks old pigs for 2D cultures to optimise myotube formation, improve surface adherence and characterise myotube maturation. Over 95 % of isolated cells were myoblasts as evidenced by the expression of Pax3 and Pax7. Our relatively simple approach, based on modifications of existing surface coating reagents (Maxgel), and of proliferation and differentiation (Ultroser G) media, typically achieved by 5 days of differentiation fusion index of around 80 % manifested in an abundance of discrete myosin heavy chain (MyHC) slow and fast myotubes. There was little deterioration in myotube viability over 50 days, and the efficiency of myotube formation was maintained over seven myoblast passages. Regular spontaneous contractions of myotubes were frequently observed throughout culture. Myotubes in extended cultures were able to undergo phenotypic adaptation in response to different culture media, including the adoption of a dominant postnatal phenotype of fast-glycolytic MyHC 2x and 2b expression by about day 20 of differentiation. Furthermore, fast-glycolytic myotubes coincided with enhanced expression of the putative porcine long intergenic non-coding RNA (linc-MYH), which has recently been shown to be a key coordinator of MyHC 2b expression in vivo. Conclusions: Our revised culture protocol allows the efficient differentiation and fusion of porcine myoblasts into myotubes and their prolonged adherence to the culture surface. Furthermore, we are able to recapitulate in 2D the maturation process of myotubes to resemble postnatal fibre types which represent a major technical advance in opening access to the in vitro study of coordinated postnatal muscle gene expression

    Comparability: manufacturing, characterization and controls, report of a UK Regenerative Medicine Platform Pluripotent Stem Cell Platform Workshop, Trinity Hall, Cambridge, 14–15 September 2015

    Get PDF
    This paper summarizes the proceedings of a workshop held at Trinity Hall, Cambridge to discuss comparability and includes additional information and references to related information added subsequently to the workshop. Comparability is the need to demonstrate equivalence of product after a process change; a recent publication states that this ‘may be difficult for cell-based medicinal products’. Therefore a well-managed change process is required which needs access to good science and regulatory advice and developers are encouraged to seek help early. The workshop shared current thinking and best practice and allowed the definition of key research questions. The intent of this report is to summarize the key issues and the consensus reached on each of these by the expert delegates
    corecore