859 research outputs found

    Inhibition by ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases into adenosine and channeling to adenosine A1 receptors

    Get PDF
    © 1998 Society for NeuroscienceATP analogs substituted in the γ-phosphorus (ATPγS, β, γ-imido-ATP, and β, γ-methylene-ATP) were used to probe the involvement of P2 receptors in the modulation of synaptic transmission in the hippocampus, because their extracellular catabolism was virtually not detected in CA1 slices. ATP and γ-substituted analogs were equipotent to inhibit synaptic transmission in CA1 pyramid synapses (IC50 of 17–22 μM). The inhibitory effect of ATP and γ-phosphorus-substituted ATP analogs (30 μM) was not modified by the P2 receptor antagonist suramin (100 μM), was inhibited by 42–49% by the ecto-5’- nucleotidase inhibitor and α, β-methylene ADP (100 μM), was inhibited by 74–85% by 2 U/ml adenosine deaminase (which converts adenosine into its inactive metabolite-inosine), and was nearly prevented by the adenosine A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (10 nM). Stronger support for the involvement of extracellular adenosine formation as a main requirement for the inhibitory effect of ATP and γ-substituted ATP analogs was the observation that an inhibitor of adenosine uptake, dipyridamole (20 μM), potentiated by 92–124% the inhibitory effect of ATP and γ-substituted ATP analogs (10 μM), a potentiation similar to that obtained for 10 μM adenosine (113%). Thus, the present results indicate that inhibition by extracellular ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ectonucleotidases and channeling of the generated adenosine to adenosine A1 receptors.This work was supported by Junta Nacional de Investigação Cientifica e Tecnológica, Praxis XXI, Gulbenkian Foundation, and European Union (BIOMED 2 programme

    Caffeine and adenosine

    Get PDF
    © 2010 – IOS Press and the authors. All rights reservedCaffeine causes most of its biological effects via antagonizing all types of adenosine receptors (ARs): A1, A2A, A3, and A2B and, as does adenosine, exerts effects on neurons and glial cells of all brain areas. In consequence, caffeine, when acting as an AR antagonist, is doing the opposite of activation of adenosine receptors due to removal of endogenous adenosinergic tonus. Besides AR antagonism, xanthines, including caffeine, have other biological actions: they inhibit phosphodiesterases (PDEs) (e.g., PDE1, PDE4, PDE5), promote calcium release from intracellular stores, and interfere with GABA-A receptors. Caffeine, through antagonism of ARs, affects brain functions such as sleep, cognition, learning, and memory, and modifies brain dysfunctions and diseases: Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Epilepsy, Pain/Migraine, Depression, Schizophrenia. In conclusion, targeting approaches that involve ARs will enhance the possibilities to correct brain dysfunctions, via the universally consumed substance that is caffeine.The work in the authors’ laboratory is supported by research grants from Fundação para a Ciência e Tecnologia (FCT), Gulbenkian Foundation and European Union (COST B30)

    On the role of stigmergy in cognition

    Get PDF
    Cognition in animals is produced by the self- organized activity of mutually entrained body and brain. Given that stigmergy plays a major role in self-organization of societies, we identify stigmergic behavior in cognitive systems, as a common mechanism ranging from brain activity to social systems. We analyze natural societies and artificial systems exploiting stigmergy to produce cognition. Several authors have identified the importance of stigmergy in the behavior and cognition of social systems. However, the perspective of stigmergy playing a central role in brain activity is novel, to the best of our knowledge. We present several evidences of such processes in the brain and discuss their importance in the formation of cognition. With this we try to motivate further research on stigmergy as a relevant component for intelligent systems.info:eu-repo/semantics/acceptedVersio

    Amyotrophic Lateral Sclerosis ALS and adenosine receptors

    Get PDF
    Copyright © 2018 Sebastião, Rei and Ribeiro. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.In the present review we discuss the potential involvement of adenosinergic signaling, in particular the role of adenosine receptors, in amyotrophic lateral sclerosis (ALS). Though the literature on this topic is not abundant, the information so far available on adenosine receptors in animal models of ALS highlights the interest to continue to explore the role of these receptors in this neurodegenerative disease. Indeed, all motor neurons affected in ALS are responsive to adenosine receptor ligands but interestingly, there are alterations in pre-symptomatic or early symptomatic stages that mirror those in advanced disease stages. Information starts to emerge pointing toward a beneficial role of A2A receptors (A2AR), most probably at early disease states, and a detrimental role of caffeine, in clear contrast with what occurs in other neurodegenerative diseases. However, some evidence also exists on a beneficial action of A2AR antagonists. It may happen that there are time windows where A2AR prove beneficial and others where their blockade is required. Furthermore, the same changes may not occur simultaneously at the different synapses. In line with this, it is not fully understood if ALS is a dying back disease or if it propagates in a centrifugal way. It thus seems crucial to understand how motor neuron dysfunction occurs, how adenosine receptors are involved in those dysfunctions and whether the early changes in purinergic signaling are compensatory or triggers for the disease. Getting this information is crucial before starting the design of purinergic based strategies to halt or delay disease progression.This work was supported by LISBOA-01-0145-FEDER-007391, project co-funded by FEDER through POR Lisboa 2020 (Programa Operacional Regional de Lisboa) from PORTUGAL 2020 and Fundação para a Ciência e Tecnologia (FCT) and by a Twinning action (SynaNet) from the EU H2020 program (Project Number: 692340). NR is in receipt of an FCT fellowship (PD /BD/113463/2015) and is a fellow of the M2B-Ph.D. Program.info:eu-repo/semantics/publishedVersio

    Hábitos alimentares de utentes adultos do centro de saúde de Castelo Branco

    Get PDF
    Em Portugal têm vindo a revelar-se alguns erros alimentares praticados por grande parte da população. Esses erros cometem-se por excesso de ingestão de certo tipo de alimentos que, consequentemente, levam a problemas no organismo, como é o caso da obesidade, diabetes, hipertensão arterial, entre outras doenças

    Activation of adenosine A2A receptors induces TrkB translocation and increases BDNF-mediated phospho-TrkB localization in lipid rafts : implications for neuromodulation

    Get PDF
    Copyright © 2010 the authorsBrain-derived neurotrophic factor (BDNF) signaling is critical for neuronal development and transmission. Recruitment of TrkB receptors to lipid rafts has been hown to be necessary for the activation of specific signaling pathways and modulation of neurotransmitter release by BDNF. Since TrkB receptors are known to be modulated by adenosine A2A receptor activation, we hypothesized that activation of A2A receptors could influence TrkB receptor localization among different membrane microdomains. We found that adenosine A2A receptor agonists increased the levels of TrkB receptors in the lipid raft fraction of cortical membranes and potentiated BDNF-induced augmentation of phosphorylated TrkB levels in lipid rafts. Blockade of the clathrin-mediated endocytosis with monodansylcadaverine(100µM) did not modify the effects of theA2A receptor agonists but significantly impairedBDNFeffects on TrkB recruitment to lipid rafts. The effect of A2A receptor activation in TrkB localization was mimicked by 5 µM forskolin, an adenylyl cyclase activator. Also, it was blocked by the PKA inhibitors Rp-cAMPs and PKI-(14 –22), and by the Src-family kinase inhibitor PP2. Moreover, removal of endogenous adenosine or disruption of lipid rafts reduced BDNF stimulatory effects on glutamate release from cortical synaptosomes. Lipid raft integrity was also required for the effects of BDNF on hippocampal long-term potentiation at CA1 synapses. Our data demonstrate, for the first time, a BDNF-independent recruitment of TrkB receptors to lipid rafts induced by activation of adenosine A2A receptors, with functional consequences for TrkB phosphorylation and BDNF-induced modulation of neurotransmitter release and hippocampal plasticity.Supported by Fundacão para a Ciência e a Tecnologia (SFRH/BD/21374/2005 for N.A.L., SFRH/BD/21359/2005 for V.C.S., and SFRH/BPD/11528/2002 for D.B.P.) and by the European Union [European Cooperation in Science and Technology (COST) COST B30 concerted action, Neural Regeneration and Plasticity (NEREPLAS)]

    On the Renormalizability of Theories with Gauge Anomalies

    Full text link
    We consider the detailed renormalization of two (1+1)-dimensional gauge theories which are quantized without preserving gauge invariance: the chiral and the "anomalous" Schwinger models. By regularizing the non-perturbative divergences that appear in fermionic Green's functions of both models, we show that the "tree level" photon propagator is ill-defined, thus forcing one to use the complete photon propagator in the loop expansion of these functions. We perform the renormalization of these divergences in both models to one loop level, defining it in a consistent and semi-perturbative sense that we propose in this paper.Comment: Final version, new title and abstract, introduction and conclusion rewritten, detailed semiperturbative discussion included, references added; to appear in International Journal of Modern Physics

    A model of epileptogenesis in rhinal cortex-hippocampus organotypic slice cultures

    Get PDF
    Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported LicenseOrganotypic slice cultures have been widely used to model brain disorders and are considered excellent platforms for evaluating a drug's neuroprotective and therapeutic potential. Organotypic slices are prepared from explanted tissue and represent a complex multicellular ex vivo environment. They preserve the three-dimensional cytoarchitecture and local environment of brain cells, maintain the neuronal connectivity and the neuron-glia reciprocal interaction. Hippocampal organotypic slices are considered suitable to explore the basic mechanisms of epileptogenesis, but clinical research and animal models of epilepsy have suggested that the rhinal cortex, composed of perirhinal and entorhinal cortices, play a relevant role in seizure generation. Here, we describe the preparation of rhinal cortex-hippocampus organotypic slices. Recordings of spontaneous activity from the CA3 area under perfusion with complete growth medium, at physiological temperature and in the absence of pharmacological manipulations, showed that these slices depict evolving epileptic-like events throughout time in culture. Increased cell death, through propidium iodide uptake assay, and gliosis, assessed with fluorescence-coupled immunohistochemistry, was also observed. The experimental approach presented highlights the value of rhinal cortex-hippocampus organotypic slice cultures as a platform to study the dynamics and progression of epileptogenesis and to screen potential therapeutic targets for this brain pathology.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement Nº 952455, Fundação para a Ciência e Tecnologia (FCT) through Project PTDC/MEDFAR/30933/2017, and Faculdade de Medicina da Universidade de Lisboainfo:eu-repo/semantics/publishedVersio

    A modular web-based software solution for mobile networks planning, operation and optimization

    Get PDF
    Mobile networks management is increasingly critical due to heavy communications usage by customers and complex due to the multiple technologies and systems deployed. Thus, Mobile Network Operators (MNOs) are constantly looking for better software solutions and tools to help them increase network performance and manage their networks more efficiently. In this paper, we present a modular web-based software solution to tackle problems related to mobile network planning, operation and optimization. The solution is focused on a set of functional requirements carefully chosen to support the network life cycle management, from planning to Operation and Maintenance (OAM) and optimisation stages. Based on a 3-tier modular architecture and implemented using only open-source software, the solution handles multiple data sources (e.g., Drive Test (DT) and Performance Management (PM)) and multiple Radio Access Network (RAN) technologies. MNOs can explore all available data through a flexible and user-friendly web interface, that also includes map-based visualization of the network. Moreover, the solution incorporates a set of recently developed and validated RAN algorithms, supporting tasks of network diagnosis, optimization, and planning. Also, with the purpose of optimizing the network, MNOs can investigate network simulations, using the RAN algorithms, of how the network will behave under certain conditions, and visualize the outcome of those simulations.info:eu-repo/semantics/publishedVersio

    Broadcasting scalable video with generalized spatial modulation in cellular networks

    Get PDF
    This paper considers the transmission of scalable video via broadcast and multicast to increase spectral and energy efficiency in cellular networks. To address this problem, we study the use of generalized spatial modulation (GSM) combined with non-orthogonal hierarchical M-QAM modulations due to the capability to exploit the potential gains of large scale antenna systems and achieve high spectral and energy efficiencies. We introduce the basic idea of broadcasting/multicasting scalable video associated to GSM, and discuss the key limitations. Non-uniform hierarchical QAM constellations are used for broadcasting/multicasting scalable video while user specific messages are carried implicitly on the indexes of the active transmit antennas combinations. To deal with multiple video and dedicated user streams multiplexed on the same transmission, an iterative receiver with reduced complexity is described. 5G New Radio (NR) based link and system level results are presented. Two different ways of quadruplicating the number of broadcasting programs are evaluated and compared. Performance results show that the proposed GSM scheme is capable of achieving flexibility and energy efficiency gain over conventional multiple input multiple output (MIMO) schemes.info:eu-repo/semantics/publishedVersio
    corecore