71 research outputs found
Early Clinical and Subclinical Visual Evoked Potential and Humphrey's Visual Field Defects in Cryptococcal Meningitis.
Cryptococcal induced visual loss is a devastating complication in survivors of cryptococcal meningitis (CM). Early detection is paramount in prevention and treatment. Subclinical optic nerve dysfunction in CM has not hitherto been investigated by electrophysiological means. We undertook a prospective study on 90 HIV sero-positive patients with culture confirmed CM. Seventy-four patients underwent visual evoked potential (VEP) testing and 47 patients underwent Humphrey's visual field (HVF) testing. Decreased best corrected visual acuity (BCVA) was detected in 46.5% of patients. VEP was abnormal in 51/74 (68.9%) right eyes and 50/74 (67.6%) left eyes. VEP P100 latency was the main abnormality with mean latency values of 118.9 (±16.5) ms and 119.8 (±15.7) ms for the right and left eyes respectively, mildly prolonged when compared to our laboratory references of 104 (±10) ms (p<0.001). Subclinical VEP abnormality was detected in 56.5% of normal eyes and constituted mostly latency abnormality. VEP amplitude was also significantly reduced in this cohort but minimally so in the visually unimpaired. HVF was abnormal in 36/47 (76.6%) right eyes and 32/45 (71.1%) left eyes. The predominant field defect was peripheral constriction with an enlarged blind spot suggesting the greater impact by raised intracranial pressure over that of optic neuritis. Whether this was due to papilloedema or a compartment syndrome is open to further investigation. Subclinical HVF abnormalities were minimal and therefore a poor screening test for early optic nerve dysfunction. However, early optic nerve dysfunction can be detected by testing of VEP P100 latency, which may precede the onset of visual loss in CM
Inhibition of constitutive and cxc-chemokine-induced NF-κB activity potentiates ansamycin-based HSP90-inhibitor cytotoxicity in castrate-resistant prostate cancer cells
Background: We determined how CXC-chemokine signalling and necrosis factor-B (NF-B) activity affected heat-shock protein 90 (Hsp90) inhibitor (geldanamycin (GA) and 17-allylamino-demethoxygeldanamycin (17-AAG)) cytotoxicity in castrate-resistant prostate cancer (CRPC).Methods:Geldanamycin and 17-AAG toxicity, together with the CXCR2 antagonist AZ10397767 or NF-B inhibitor BAY11-7082, was assessed by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay in two CRPC lines, DU145 and PC3. Flow cytometry quantified apoptotic or necrosis profiles. Necrosis factor-B activity was determined by luciferase readouts or indirectly by quantitative PCR and ELISA-based determination of CXCL8 expression.Results:Geldanamycin and 17-AAG reduced PC3 and DU145 cell viability, although PC3 cells were less sensitive. Addition of AZ10397767 increased GA (e.g., PC3 IC 20: from 1.670.4 to 0.180.2 nM) and 17-AAG (PC3 IC 20: 43.77.8 to 0.641.8 nM) potency in PC3 but not DU145 cells. Similarly, BAY11-7082 increased the potency of 17-AAG in PC3 but not in DU145 cells, correlating with the elevated constitutive NF-B activity in PC3 cells. AZ10397767 increased 17-AAG-induced apoptosis and necrosis and decreased NF-B activity/CXCL8 expression in 17-AAG-treated PC3 cells.Conclusion:Ansamycin cytotoxicity is enhanced by inhibiting NF-B activity and/or CXC-chemokine signalling in CRPC cells. Detecting and/or inhibiting NF-B activity may aid the selection and treatment response of CRPC patients to Hsp90 inhibitors.</p
Genesis and Impulsive Evolution of the 2017 September 10 Coronal Mass Ejection
The X8.2 event of 2017 September 10 provides unique observations to study the genesis, magnetic morphology,
and impulsive dynamics of a very fast coronal mass ejection (CME). Combining GOES-16/SUVI and SDO/AIA
EUV imagery, we identify a hot (T ≈ 10–15 MK) bright rim around a quickly expanding cavity, embedded inside
a much larger CME shell (T ≈ 1–2 MK). The CME shell develops from a dense set of large AR loops (0.5Rs)
and seamlessly evolves into the CME front observed in LASCO C2. The strong lateral overexpansion of the CME
shell acts as a piston initiating the fast EUV wave. The hot cavity rim is demonstrated to be a manifestation of the
dominantly poloidal flux and frozen-in plasma added to the rising flux rope by magnetic reconnection in the current
sheet beneath. The same structure is later observed as the core of the white-light CME, challenging the traditional
interpretation of the CME three-part morphology. The large amount of added magnetic flux suggested by these
observations explains the extreme accelerations of the radial and lateral expansion of the CME shell and cavity, all
reaching values of 5–10 km s
−2
. The acceleration peaks occur simultaneously with the first RHESSI 100–300 keV
hard X-ray burst of the associated flare, further underlining the importance of the reconnection process for the
impulsive CME evolution. Finally, the much higher radial propagation speed of the flux rope in relation to the
CME shell causes a distinct deformation of the white-light CME front and shock
Picoflare jets power the solar wind emerging from a coronal hole on the Sun.
Coronal holes are areas on the Sun with open magnetic field lines. They are a source region of the solar wind, but how the wind emerges from coronal holes is not known. We observed a coronal hole using the Extreme Ultraviolet Imager on the Solar Orbiter spacecraft. We identified jets on scales of a few hundred kilometers, which last 20 to 100 seconds and reach speeds of ~100 kilometers per second. The jets are powered by magnetic reconnection and have kinetic energy in the picoflare range. They are intermittent but widespread within the observed coronal hole. We suggest that such picoflare jets could produce enough high-temperature plasma to sustain the solar wind and that the wind emerges from coronal holes as a highly intermittent outflow at small scales
Constitutive and Treatment-Induced CXCL8-Signalling Selectively Modulates the Efficacy of Anti-Metabolite Therapeutics in Metastatic Prostate Cancer
<div><h3>Background</h3><p>The current study was undertaken to characterize the effect of anti-metabolites on inducing CXCL8 signaling and determining whether the constitutive and/or drug-induced CXCL8 signaling in metastatic prostate cancer (CaP) cells modulates their sensitivity to this class of agent.</p> <h3>Methods</h3><p>The response of metastatic CaP cells to 5-Fluorouracil (5-FU), Pemetrexed or Tomudex was determined using cell count assays, flow cytometry and PARP cleavage analysis. Quantitative-PCR, ELISA and immunoblots were employed to determine effects of drugs or CXCL8 administration on target gene/protein expression.</p> <h3>Results</h3><p>Administration of 5-FU but not pemetrexed potentiated CXCL8 secretion and increased CXCR1 and CXCR2 gene expression in metastatic PC3 cells. Consistent with this, the inhibition of CXCL8 signaling using a CXCR2 antagonist, AZ10397767, increased the cytotoxicity of 5-FU by 4-fold (P<0.001), and increased 5-FU-induced apoptosis in PC3 cells (P<0.01). In contrast, while administration of AZ10397767 had no effect on the sensitivity of pemetrexed, the CXCR2 antagonist exerted the greatest effect in increasing the sensitivity of PC3 cells to Tomudex, a directed thymidylate synthase (TS) inhibitor. Subsequent experiments confirmed that administration of recombinant human CXCL8 increased TS expression, a response mediated in part by the CXCR2 receptor. Moreover, siRNA-mediated knockdown of the CXCL8-target gene Bcl-2 increased the sensitivity of PC3 cells to 5-FU.</p> <h3>Conclusions</h3><p>CXCL8 signaling provides a selective resistance of metastatic prostate cancer cells to specific anti-metabolites by promoting a target-associated resistance, in addition to underpinning an evasion of treatment-induced apoptosis.</p> </div
Prominence eruption observed in He II 304 Å up to >6 R⊙ by EUI/FSI aboard Solar Orbiter⋆
Aims. We report observations of a unique, large prominence eruption that was observed in the He II 304 Å passband of the Extreme Ultraviolet Imager/Full Sun Imager telescope aboard Solar Orbiter on 15–16 February 2022.
Methods. Observations from several vantage points – Solar Orbiter, the Solar-Terrestrial Relations Observatory, the Solar and Heliospheric Observatory, and Earth-orbiting satellites – were used to measure the kinematics of the erupting prominence and the associated coronal mass ejection. Three-dimensional reconstruction was used to calculate the deprojected positions and speeds of different parts of the prominence. Observations in several passbands allowed us to analyse the radiative properties of the erupting prominence.
Results. The leading parts of the erupting prominence and the leading edge of the corresponding coronal mass ejection propagate at speeds of around 1700 km s−1 and 2200 km s−1, respectively, while the trailing parts of the prominence are significantly slower (around 500 km s−1). Parts of the prominence are tracked up to heights of over 6 R⊙. The He II emission is probably produced via collisional excitation rather than scattering. Surprisingly, the brightness of a trailing feature increases with height.
Conclusions. The reported prominence is the first observed in He II 304 Å emission at such a great height (above 6 R⊙)
Titanium dioxide particle – induced goblet cell hyperplasia : association with mast cells and IL-13
BACKGROUND: Inhalation of particles aggravates respiratory symptoms including mucus hypersecretion in patients with chronic airway disease and induces goblet cell hyperplasia (GCH) in experimental animal models. However, the underlying mechanisms remain poorly understood. METHODS: To understand this, the numbers of goblet cells, Muc5ac (+) expressing epithelial cells and IL-13 expressing mast cells were measured in the trachea of sham or TiO(2 )particles – treated rats using periodic acid-Schiff, toluidine blue and immunohistochemical staining. RT-PCR for Muc-1, 2 and 5ac gene transcripts was done using RNA extracted from the trachea. Differential cell count and IL-13 levels were measured in bronchoalveolar lavage (BAL) fluid. In pretreatment groups, cyclophosphamide (CPA) or dexamethasone (DEX) was given before instillation of TiO(2). TiO(2 )treatment markedly increased Muc5ac mRNA expression, and Muc5ac (+) or PAS (+) epithelial cells 48 h following treatment. RESULTS: The concentration of IL-13 in BAL fluids was higher in TiO(2 )treated – rats when compared to those in sham rats (p < 0.05). Pretreatment with cyclophosphamide (CPA) decreased the number of neutrophils and eosinophils in BAL fluid of TiO(2 )treated – rats (p < 0.05), but affected neither the percentage of PAS (+) cells, nor IL-13 levels in the BAL fluids (p > 0.05). In contrast, pretreatment with dexamethasone (DEX) diminished the percentage of PAS (+) cells and the levels of IL-13 (p < 0.05). TiO(2 )treatment increased the IL-13 (+) mast cells (p < 0.05) in the trachea, which was suppressed by DEX (p < 0.05), but not by CPA pretreatment (p > 0.05). In addition there were significant correlations of IL-13 (+) rate of mast cells in the trachea with IL-13 concentration in BAL fluid (p < 0.01) and with the percentage of Muc5ac (+) cells in the sham and TiO(2 )treated rats (p < 0.05). CONCLUSION: In conclusion, TiO(2 )instillation induces GCH and Muc5ac expression, and this process may be associated with increased production of IL-13 by mast cells
Genome-Wide Linkage Analysis of Global Gene Expression in Loin Muscle Tissue Identifies Candidate Genes in Pigs
BACKGROUND: Nearly 6,000 QTL have been reported for 588 different traits in pigs, more than in any other livestock species. However, this effort has translated into only a few confirmed causative variants. A powerful strategy for revealing candidate genes involves expression QTL (eQTL) mapping, where the mRNA abundance of a set of transcripts is used as the response variable for a QTL scan. METHODOLOGY/PRINCIPAL FINDINGS: We utilized a whole genome expression microarray and an F(2) pig resource population to conduct a global eQTL analysis in loin muscle tissue, and compared results to previously inferred phenotypic QTL (pQTL) from the same experimental cross. We found 62 unique eQTL (FDR <10%) and identified 3 gene networks enriched with genes subject to genetic control involved in lipid metabolism, DNA replication, and cell cycle regulation. We observed strong evidence of local regulation (40 out of 59 eQTL with known genomic position) and compared these eQTL to pQTL to help identify potential candidate genes. Among the interesting associations, we found aldo-keto reductase 7A2 (AKR7A2) and thioredoxin domain containing 12 (TXNDC12) eQTL that are part of a network associated with lipid metabolism and in turn overlap with pQTL regions for marbling, % intramuscular fat (% fat) and loin muscle area on Sus scrofa (SSC) chromosome 6. Additionally, we report 13 genomic regions with overlapping eQTL and pQTL involving 14 local eQTL. CONCLUSIONS/SIGNIFICANCE: Results of this analysis provide novel candidate genes for important complex pig phenotypes
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
More insight into the fate of biomedical meeting abstracts: a systematic review
BACKGROUND: It has been estimated that about 45% of abstracts that are accepted for presentation at biomedical meetings will subsequently be published in full. The acceptance of abstracts at meetings and their fate after initial rejection are less well understood. We set out to estimate the proportion of abstracts submitted to meetings that are eventually published as full reports, and to explore factors that are associated with meeting acceptance and successful publication. METHODS: Studies analysing acceptance of abstracts at biomedical meetings or their subsequent full publication were searched in MEDLINE, OLDMEDLINE, EMBASE, Cochrane Library, CINAHL, BIOSIS, Science Citation Index Expanded, and by hand searching of bibliographies and proceedings. We estimated rates of abstract acceptance and of subsequent full publication, and identified abstract and meeting characteristics associated with acceptance and publication, using logistic regression analysis, survival-type analysis, and meta-analysis. RESULTS: Analysed meetings were held between 1957 and 1999. Of 14945 abstracts that were submitted to 43 meetings, 46% were accepted. The rate of full publication was studied with 19123 abstracts that were presented at 234 meetings. Using survival-type analysis, we estimated that 27% were published after two, 41% after four, and 44% after six years. Of 2412 abstracts that were rejected at 24 meetings, 27% were published despite rejection. Factors associated with both abstract acceptance and subsequent publication were basic science and positive study outcome. Large meetings and those held outside the US were more likely to accept abstracts. Abstracts were more likely to be published subsequently if presented either orally, at small meetings, or at a US meeting. Abstract acceptance itself was strongly associated with full publication. CONCLUSIONS: About one third of abstracts submitted to biomedical meetings were published as full reports. Acceptance at meetings and publication were associated with specific characteristics of abstracts and meetings
- …