147 research outputs found

    Nut production in Bertholletia excelsa across a logged forest mosaic: implications for multiple forest use

    Get PDF
    Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world’s most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1–2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich forests, when a buffer zone cannot be observed, low logging intensities should be implemented. The sustainability of this integrated management system will ultimately depend on a complex series of socioeconomic and ecological interactions. Yet we submit that our study provides an important initial step in understanding the compatibility of timber harvesting with a high value NTFP, potentially allowing for diversification of forest use strategies in Amazonian Perù

    Mammalian MCM Loading in Late-G1 Coincides with Rb Hyperphosphorylation and the Transition to Post-Transcriptional Control of Progression into S-Phase

    Get PDF
    BACKGROUND: Control of the onset of DNA synthesis in mammalian cells requires the coordinated assembly and activation of the pre-Replication Complex. In order to understand the regulatory events controlling preRC dynamics, we have investigated how the timing of preRC assembly relates temporally to other biochemical events governing progress into S-phase. METHODOLOGY/PRINCIPAL FINDING: In murine and Chinese hamster (CHO) cells released from quiescence, the loading of the replicative MCM helicase onto chromatin occurs in the final 3-4 hrs of G(1). Cdc45 and PCNA, both of which are required for G(1)-S transit, bind to chromatin at the G(1)-S transition or even earlier in G(1), when MCMs load. An RNA polymerase II inhibitor (DRB) was added to synchronized murine keratinocytes to show that they are no longer dependent on new mRNA synthesis 3-4 hrs prior to S-phase entry, which is also true for CHO and human cells. Further, CHO cells can progress into S-phase on time, and complete S-phase, under conditions where new mRNA synthesis is significantly compromised, and such mRNA suppression causes no adverse effects on preRC dynamics prior to, or during, S-phase progression. Even more intriguing, hyperphosphorylation of Rb coincides with the start of MCM loading and, paradoxically, with the time in late-G(1) when de novo mRNA synthesis is no longer rate limiting for progression into S-phase. CONCLUSIONS/SIGNIFICANCE: MCM, Cdc45, and PCNA loading, and the subsequent transit through G(1)-S, do not depend on concurrent new mRNA synthesis. These results indicate that mammalian cells pass through a distinct transition in late-G(1) at which time Rb becomes hyperphosphorylated and MCM loading commences, but that after this transition the control of MCM, Cdc45, and PCNA loading and the onset of DNA replication are regulated at the post-transcriptional level

    Human Intestinal Lumen and Mucosa-Associated Microbiota in Patients with Colorectal Cancer

    Get PDF
    Recent reports have suggested the involvement of gut microbiota in the progression of colorectal cancer (CRC). We utilized pyrosequencing based analysis of 16S rRNA genes to determine the overall structure of microbiota in patients with colorectal cancer and healthy controls; we investigated microbiota of the intestinal lumen, the cancerous tissue and matched noncancerous normal tissue. Moreover, we investigated the mucosa-adherent microbial composition using rectal swab samples because the structure of the tissue-adherent bacterial community is potentially altered following bowel cleansing. Our findings indicated that the microbial structure of the intestinal lumen and cancerous tissue differed significantly. Phylotypes that enhance energy harvest from diets or perform metabolic exchange with the host were more abundant in the lumen. There were more abundant Firmicutes and less abundant Bacteroidetes and Proteobacteria in lumen. The overall microbial structures of cancerous tissue and noncancerous tissue were similar; howerer the tumor microbiota exhibited lower diversity. The structures of the intestinal lumen microbiota and mucosa-adherent microbiota were different in CRC patients compared to matched microbiota in healthy individuals. Lactobacillales was enriched in cancerous tissue, whereas Faecalibacterium was reduced. In the mucosa-adherent microbiota, Bifidobacterium, Faecalibacterium, and Blautia were reduced in CRC patients, whereas Fusobacterium, Porphyromonas, Peptostreptococcus, and Mogibacterium were enriched. In the lumen, predominant phylotypes related to metabolic disorders or metabolic exchange with the host, Erysipelotrichaceae, Prevotellaceae, and Coriobacteriaceae were increased in cancer patients. Coupled with previous reports, these results suggest that the intestinal microbiota is associated with CRC risk and that intestinal lumen microflora potentially influence CRC risk via cometabolism or metabolic exchange with the host. However, mucosa-associated microbiota potentially affects CRC risk primarily through direct interaction with the host

    The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes

    Get PDF
    Autism is characterized by a broad spectrum of clinical manifestations including qualitative impairments in social interactions and communication, and repetitive and stereotyped patterns of behavior. Abnormal acceleration of brain growth in early childhood, signs of slower growth of neurons, and minicolumn developmental abnormalities suggest multiregional alterations. The aim of this study was to detect the patterns of focal qualitative developmental defects and to identify brain regions that are prone to developmental alterations in autism. Formalin-fixed brain hemispheres of 13 autistic (4–60 years of age) and 14 age-matched control subjects were embedded in celloidin and cut into 200-μm-thick coronal sections, which were stained with cresyl violet and used for neuropathological evaluation. Thickening of the subependymal cell layer in two brains and subependymal nodular dysplasia in one brain is indicative of active neurogenesis in two autistic children. Subcortical, periventricular, hippocampal and cerebellar heterotopias detected in the brains of four autistic subjects (31%) reflect abnormal neuronal migration. Multifocal cerebral dysplasia resulted in local distortion of the cytoarchitecture of the neocortex in four brains (31%), of the entorhinal cortex in two brains (15%), of the cornu Ammonis in four brains and of the dentate gyrus in two brains. Cerebellar flocculonodular dysplasia detected in six subjects (46%), focal dysplasia in the vermis in one case, and hypoplasia in one subject indicate local failure of cerebellar development in 62% of autistic subjects. Detection of flocculonodular dysplasia in only one control subject and of a broad spectrum of focal qualitative neuropathological developmental changes in 12 of 13 examined brains of autistic subjects (92%) reflects multiregional dysregulation of neurogenesis, neuronal migration and maturation in autism, which may contribute to the heterogeneity of the clinical phenotype

    European clinical guidelines for Tourette syndrome and other tic disorders. Part II: pharmacological treatment

    Get PDF
    To develop a European guideline on pharmacologic treatment of Tourette syndrome (TS) the available literature was thoroughly screened and extensively discussed by a working group of the European Society for the Study of Tourette syndrome (ESSTS). Although there are many more studies on pharmacotherapy of TS than on behavioral treatment options, only a limited number of studies meets rigorous quality criteria. Therefore, we have devised a two-stage approach. First, we present the highest level of evidence by reporting the findings of existing Cochrane reviews in this field. Subsequently, we provide the first comprehensive overview of all reports on pharmacological treatment options for TS through a MEDLINE, PubMed, and EMBASE search for all studies that document the effect of pharmacological treatment of TS and other tic disorders between 1970 and November 2010. We present a summary of the current consensus on pharmacological treatment options for TS in Europe to guide the clinician in daily practice. This summary is, however, rather a status quo of a clinically helpful but merely low evidence guideline, mainly driven by expert experience and opinion, since rigorous experimental studies are scarce

    The evolution of the plastid chromosome in land plants: gene content, gene order, gene function

    Get PDF
    This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable

    Estimates of abundance and trend on a Blue Whale feeding ground off Isla de Chiloé, Chile

    Get PDF
    Since 1970, blue whales (Balaenoptera musculus) have been seen feeding in the waters off southern Chile during the summer and autumn (December to May). Investigation of the genetic, acoustic and morphological characteristics of these blue whales shows that they are a distinct but unnamed subspecies, called the Chilean blue whales. Photo-identification surveys have been conducted in the waters off northwestern Isla Grande de Chiloé, southern Chile from 2004–2012 and Isla Chañaral, central Chile in 2012. Over this time, 1,070 blue whales were encountered yielding, after photo-quality control, 318 and 267 unique photographs of the left and right side of the flank respectively. Using mark-recapture analysis of left and right side photographs collected from Isla Grande de Chiloé (2004–2012), open population models estimate that ~570–760 whales are feeding seasonally in this region. POPAN superpopulation abundance estimates for the same feeding ground in 2012 are 762 (95% confidence intervals, CI = 638–933) and 570 (95% CI 475–705) for left and right side datasets respectively, very similar to results from closed population models. Estimates of trend revealed strong variation in abundance, peaking in 2009 and [suggesting] fluctuating use in the survey area over time, likely related to the density of their prey. High inter-annual return rates suggest a degree of site-fidelity of individuals to Isla Grande de Chiloé and that the number of whales using this feeding ground is relatively small
    corecore