3,243 research outputs found

    Direct evidence for the magnetic ordering of Nd ions in NdFeAsO by high resolution inelastic neutron scattering

    Full text link
    We investigated the low energy excitations in the parent compound NdFeAsO of the Fe-pnictide superconductor in the μ\mueV range by a back scattering neutron spectrometer. The energy scans on a powder NdFeAsO sample revealed inelastic peaks at E = 1.600 ±0.003μ \pm 0.003 \mueV at T = 0.055 K on both energy gain and energy loss sides. The inelastic peaks move gradually towards lower energy with increasing temperature and finally merge with the elastic peak at about 6 K. We interpret the inelastic peaks to be due to the transition between hyperfine-split nuclear level of the 143^{143}Nd and 145^{145}Nd isotopes with spin I=7/2I = 7/2. The hyperfine field is produced by the ordering of the electronic magnetic moment of Nd at low temperature and thus the present investigation gives direct evidence of the ordering of the Nd magnetic sublattice of NdFeAsO at low temperature

    Photon Shot Noise Dephasing in the Strong-Dispersive Limit of Circuit QED

    Full text link
    We study the photon shot noise dephasing of a superconducting transmon qubit in the strong-dispersive limit, due to the coupling of the qubit to its readout cavity. As each random arrival or departure of a photon is expected to completely dephase the qubit, we can control the rate at which the qubit experiences dephasing events by varying \textit{in situ} the cavity mode population and decay rate. This allows us to verify a pure dephasing mechanism that matches theoretical predictions, and in fact explains the increased dephasing seen in recent transmon experiments as a function of cryostat temperature. We investigate photon dynamics in this limit and observe large increases in coherence times as the cavity is decoupled from the environment. Our experiments suggest that the intrinsic coherence of small Josephson junctions, when corrected with a single Hahn echo, is greater than several hundred microseconds.Comment: 5 pages, 4 figures; includes Supporting Online Material of 6 pages with 5 figure

    On the Decoherence of Primordial Fluctuations During Inflation

    Full text link
    We study the process whereby quantum cosmological perturbations become classical within inflationary cosmology. By setting up a master-equation formulation we show how quantum coherence for super-Hubble modes can be destroyed by their coupling to the environment provided by sub-Hubble modes. We identify what features the sub-Hubble environment must have in order to decohere the longer wavelengths, and identify how the onset of decoherence (and how long it takes) depends on the properties of the sub-Hubble physics which forms the environment. Our results show that the decoherence process is largely insensitive to the details of the coupling between the sub- and super-Hubble scales. They also show how locality implies, quite generally, that the decohered density matrix at late times is diagonal in the field representation (as is implicitly assumed by extant calculations of inflationary density perturbations). Our calculations also imply that decoherence can arise even for couplings which are as weak as gravitational in strength.Comment: 31 pages, 1 figur

    On the upper bound of the electronic kinetic energy in terms of density functionals

    Full text link
    We propose a simple density functional expression for the upper bound of the kinetic energy for electronic systems. Such a functional is valid in the limit of slowly varying density, its validity outside this regime is discussed by making a comparison with upper bounds obtained in previous work. The advantages of the functional proposed for applications to realistic systems is briefly discussed.Comment: 10 pages, no figure

    Fluctuating magnetic moments in liquid metals

    Full text link
    We re-analyze literature data on neutron scattering by liquid metals to show that non-magnetic liquid metals possess a magnetic moment that fluctuates on a picosecond time scale. This time scale follows the motion of the cage-diffusion process in which an ion rattles around in the cage formed by its neighbors. We find that these fluctuating magnetic moments are present in liquid Hg, Al, Ga and Pb, and possibly also in the alkali metals.Comment: 17 pages, 5 figures, submitted to PR

    Zelnate on Arrival Could Decrease the Likelihood of Subsequent Pulls in Suspect Bovine Respiratory Disease Complex Cases

    Get PDF
    Antimicrobial metaphylaxis is an important tool used for the prevention of Bovine Respiratory Disease Complex; a disease with a large economic impact that typically affects newly-weaned beef calves that are marketed and transported a distance from their origin. There are questions involving the potential benefit of Zelnate, a novel non-antibiotic technology designed to activate an animal’s natural immunity to fight Bovine Respiratory Disease Complex, being used either solely or in combination with metaphylaxis at the time of initial processing of high risk calves. More knowledge is also needed regarding the possible effects of repeated use of Zelnate when subsequent therapy is required in individual Bovine Respiratory Disease Complex cases. The objective of this study was to evaluate the effectiveness of Zelnate when used as part of an antimicrobial metaphylaxis treatment or when used in combination with an antibiotic when a calf is diagnosed with Bovine Respiratory Disease Complex
    • …
    corecore