3,716 research outputs found

    Structure, magnetic and transport properties of Ti-substituted La0.7Sr0.3MnO3

    Get PDF
    Ti-substituted perovskites, La0.7Sr0.3Mn1-xTixO3, with x between 0 to 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3c) from 10 K to room temperature. At room temperature, the cell parameters a, c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x greater than 0.10, while the unit cell volume remains nearly constant for x greater than 0.10. The average (Mn,Ti)-O bond length increases up to x=0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x=0.15 at room temperature. Below the Curie temperature T_C, the resistance exhibits metallic behavior for the x _ 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x_ 0.10 samples. A peak in resistivity appears below T_C for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x less than or equal to 0.10. The maximum MR effect is about 70% for La0.7Sr0.3Mn0.8Ti0.2O3. The separation of TC and the resistivity maximum temperature Tmax enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La0.7Sr0.3MnO3.Comment: zip fil

    The age of data-driven proteomics : how machine learning enables novel workflows

    Get PDF
    A lot of energy in the field of proteomics is dedicated to the application of challenging experimental workflows, which include metaproteomics, proteogenomics, data independent acquisition (DIA), non-specific proteolysis, immunopeptidomics, and open modification searches. These workflows are all challenging because of ambiguity in the identification stage; they either expand the search space and thus increase the ambiguity of identifications, or, in the case of DIA, they generate data that is inherently more ambiguous. In this context, machine learning-based predictive models are now generating considerable excitement in the field of proteomics because these predictive models hold great potential to drastically reduce the ambiguity in the identification process of the above-mentioned workflows. Indeed, the field has already produced classical machine learning and deep learning models to predict almost every aspect of a liquid chromatography-mass spectrometry (LC-MS) experiment. Yet despite all the excitement, thorough integration of predictive models in these challenging LC-MS workflows is still limited, and further improvements to the modeling and validation procedures can still be made. In this viewpoint we therefore point out highly promising recent machine learning developments in proteomics, alongside some of the remaining challenges

    Noise characteristics of upper surface blown configurations. Experimental program and results

    Get PDF
    An experimental data base was developed from the model upper surface blowing (USB) propulsive lift system hardware. While the emphasis was on far field noise data, a considerable amount of relevant flow field data were also obtained. The data were derived from experiments in four different facilities resulting in: (1) small scale static flow field data; (2) small scale static noise data; (3) small scale simulated forward speed noise and load data; and (4) limited larger-scale static noise flow field and load data. All of the small scale tests used the same USB flap parts. Operational and geometrical variables covered in the test program included jet velocity, nozzle shape, nozzle area, nozzle impingement angle, nozzle vertical and horizontal location, flap length, flap deflection angle, and flap radius of curvature

    Integrating Blood Collection Within Household Surveys: Lessons Learned From Nesting a Measles and Rubella Serological Survey Within a Post-Campaign Coverage Evaluation Survey in Southern Province, Zambia

    Get PDF
    Age-specific population immunity to many vaccine-preventable diseases can be measured using serological surveys. However, stand-alone serological surveys are infrequently conducted in low- and middle-income countries because of costs, operational challenges, and potential high refusal rates for blood collection. Nesting a serosurvey within a household cluster survey may overcome some of these challenges. We share lessons learned from nesting a serosurvey within a measles and rubella vaccination post-campaign coverage evaluation survey (PCES). In 15 of the 26 PCES clusters in Southern Province, Zambia, we collected dried blood spots from 581 participants aged 9 months and older. Household participation rates for the main PCES were higher in the serosurvey clusters (86%) than PCES-only clusters (71%), suggesting that a serosurvey can be successfully integrated without adversely affecting PCES participation. Among households that participated in the PCES, 80% also participated in the serosurvey and 86% of individuals available in the household provided a blood sample for the serosurvey. Substantial planning and coordination, additional staff training, and community mobilization were critical to the success of the serosurvey. Most challenges stemmed from using different data collecting tools and teams for the serosurvey and PCES. A more efficient design would be to fully integrate the serosurvey by adding blood collection and additional questions to the PCES

    The Outer Disks of Early-Type Galaxies. I. Surface-Brightness Profiles of Barred Galaxies

    Full text link
    We present a study of 66 barred, early-type (S0-Sb) disk galaxies, focused on the disk surface brightness profile outside the bar region and the nature of Freeman Type I and II profiles, their origins, and their possible relation to disk truncations. This paper discusses the data and their reduction, outlines our classification system, and presents RR-band profiles and classifications for all galaxies in the sample. The profiles are derived from a variety of different sources, including the Sloan Digital Sky Survey (Data Release 5). For about half of the galaxies, we have profiles derived from more than one telescope; this allows us to check the stability and repeatability of our profile extraction and classification. The vast majority of the profiles are reliable down to levels of mu_R ~ 27 mag arcsec^-2; in exceptional cases, we can trace profiles down to mu_R > 28. We can typically follow disk profiles out to at least 1.5 times the traditional optical radius R_25; for some galaxies, we find light extending to ~ 3 R_25. We classify the profiles into three main groups: Type I (single-exponential), Type II (down-bending), and Type III (up-bending). The frequencies of these types are approximately 27%, 42%, and 24%, respectively, plus another 6% which are combinations of Types II and III. We further classify Type II profiles by where the break falls in relation to the bar length, and in terms of the postulated mechanisms for breaks at large radii ("classical trunction" of star formation versus the influence of the Outer Lindblad Resonance of the bar). We also classify the Type III profiles by the probable morphology of the outer light (disk or spheroid). Illustrations are given for all cases. (Abridged)Comment: 41 pages, 26 PDF figures. To appear in the Astronomical Journal. Version with full-resolution figures available at http://www.mpe.mpg.de/~erwin/research

    Super-massive binary black holes and emission lines in active galactic nuclei

    Get PDF
    The broad emission spectral lines emitted from AGNs are our main probe of the geometry and physics of the broad line region (BLR) close to the SMBH. There is a group of AGNs that emits very broad and complex line profiles, showing two displaced peaks, one blueshifted and one redshifted from the systemic velocity defined by the narrow lines, or a single such peak. It has been proposed that such line shapes could indicate a supermassive binary black hole (SMB) system. We discuss here how the presence of an SMB will affect the BLRs of AGNs and what the observational consequences might be. We review previous claims of SMBs based on broad line profiles and find that they may have non-SMB explanations as a consequence of a complex BLR structure. Because of these effects it is very hard to put limits on the number of SMBs from broad line profiles. It is still possible, however, that unusual broad line profiles in combination with other observational effects (line ratios, quasi-periodical oscillations, spectropolarimetry, etc.) could be used for SMBs detection. Some narrow lines (e.g., [O\,III]) in some AGNs show a double-peaked profile. Such profiles can be caused by streams in the Narrow Line Region (NLR), but may also indicate the presence of a kilo-parsec scale mergers. A few objects indicated as double-peaked narrow line emitters are confirmed as kpc-scale margers, but double-peaked narrow line profiles are mostly caused by the complex NLR geometry. We briefly discuss the expected line profile of broad Fe Kα\alpha that probably originated in the accretion disk(s) around SMBs. Finally we consider rare configurations where a SMB system might be gravitationally lensed by a foreground galaxy, and discuss the expected line profiles in these systems.Comment: The work was presented as an invited talk at special workshop "Spectral lines and super-massive black holes" held on June 10, 2011 as a part of activity within the frame of COST action 0905 "Black holes in a violent universe" and as a part of the 8th Serbian Conference on Spectral Line Shapes in Astrophysics.Sent to New Astronomy Review as a review pape

    Triangulation of gravitational wave sources with a network of detectors

    Get PDF
    There is significant benefit to be gained by pursuing multi-messenger astronomy with gravitational wave and electromagnetic observations. In order to undertake electromagnetic follow-ups of gravitational wave signals, it will be necessary to accurately localize them in the sky. Since gravitational wave detectors are not inherently pointing instruments, localization will occur primarily through triangulation with a network of detectors. We investigate the expected timing accuracy for observed signals and the consequences for localization. In addition, we discuss the effect of systematic uncertainties in the waveform and calibration of the instruments on the localization of sources. We provide illustrative results of timing and localization accuracy as well as systematic effects for coalescing binary waveforms.Comment: 20 pages, 5 figure

    Spatial and Temporal Changes in Household Structure Locations Using High-Resolution Satellite Imagery for Population Assessment: An Analysis in Southern Zambia, 2006-2011

    Get PDF
    Satellite imagery is increasingly available at high spatial resolution and can be used for various purposes in public health research and programme implementation. Comparing a census generated from two satellite images of the same region in rural southern Zambia obtained four and a half years apart identified patterns of household locations and change over time. The length of time that a satellite image-based census is accurate determines its utility. Households were enumerated manually from satellite images obtained in 2006 and 2011 of the same area. Spatial statistics were used to describe clustering, cluster detection, and spatial variation in the location of households. A total of 3821 household locations were enumerated in 2006 and 4256 in 2011, a net change of 435 houses (11.4% increase). Comparison of the images indicated that 971 (25.4%) structures were added and 536 (14.0%) removed. Further analysis suggested similar household clustering in the two images and no substantial difference in concentration of households across the study area. Cluster detection analysis identified a small area where significantly more household structures were removed than expected; however, the amount of change was of limited practical significance. These findings suggest that random sampling of households for study participation would not induce geographic bias if based on a 4.5-year-old image in this region. Application of spatial statistical methods provides insights into the population distribution changes between two time periods and can be helpful in assessing the accuracy of satellite imagery

    Characterizing and Quantifying Human Movement Patterns Using GPS Data Loggers in an Area Approaching Malaria Elimination in Rural Southern Zambia

    Get PDF
    In areas approaching malaria elimination, human mobility patterns are important in determining the proportion of malaria cases that are imported or the result of low-level, endemic transmission. A convenience sample of participants enrolled in a longitudinal cohort study in the catchment area of Macha Hospital in Choma District, Southern Province, Zambia, was selected to carry a GPS data logger for one month from October 2013 to August 2014. Density maps and activity space plots were created to evaluate seasonal movement patterns. Time spent outside the household compound during anopheline biting times, and time spent in malaria high- and lowrisk areas, were calculated. There was evidence of seasonal movement patterns, with increased long-distance movement during the dry season. A median of 10.6% (interquartile range (IQR): 5.8-23.8) of time was spent away from the household, which decreased during anopheline biting times to 5.6% (IQR:1.7-14.9). The per cent of time spent in malaria high-risk areas for participants residing in high-risk areas ranged from 83.2% to 100%, but ranged from only 0.0% to 36.7% for participants residing in low-risk areas. Interventions targeted at the household may be more effective because of restricted movement during the rainy season, with limited movement between high- and low-risk areas
    corecore