9 research outputs found

    Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences

    Get PDF
    We report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the first metatherian (\u27marsupial\u27) species to be sequenced, the opossum provides a unique perspective on the organization and evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories about genome evolution and function, including a strong influence of biased gene conversion on nucleotide sequence composition, and a relationship between chromosomal characteristics and X chromosome inactivation. Comparison of opossum and eutherian genomes also reveals a sharp difference in evolutionary innovation between protein-coding and non-coding functional elements. True innovation in protein-coding genes seems to be relatively rare, with lineage-specific differences being largely due to diversification and rapid turnover in gene families involved in environmental interactions. In contrast, about 20% of eutherian conserved non-coding elements (CNEs) are recent inventions that postdate the divergence of Eutheria and Metatheria. A substantial proportion of these eutherian-specific CNEs arose from sequence inserted by transposable elements, pointing to transposons as a major creative force in the evolution of mammalian gene regulation. ©2007 Nature Publishing Group

    Sequencing of the Sea Lamprey (Petromyzon marinus) Genome Provides Insights into Vertebrate Evolution

    Get PDF
    Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ∼500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms

    The Otter Annotation System

    No full text
    With the completion of the human genome sequence and genome sequence available for other vertebrate genomes, the task of manual annotation at the large genome scale has become a priority. Possibly even more important, is the requirement to curate and improve this annotation in the light of future data. For this to be possible, there is a need for tools to access and manage the annotation. Ensembl provides an excellent means for storing gene structures, genome features, and sequence, but it does not support the extra textual data necessary for manual annotation. We have extended Ensembl to create the Otter manual annotation system. This comprises a relational database schema for storing the manual annotation data, an application-programming interface (API) to access it, an extensible markup language (XML) format to allow transfer of the data, and a server to allow multiuser/multimachine access to the data. We have also written a data-adaptor plugin for the Apollo Browser/Editor to enable it to utilize an Otter server. The otter database is currently used by the Vertebrate Genome Annotation (VEGA) site (http://vega.sanger.ac.uk), which provides access to manually curated human chromosomes. Support is also being developed for using the AceDB annotation editor, FMap, via a perl wrapper called Lace. The Human and Vertebrate Annotation (HAVANA) group annotators at the Sanger center are using this to annotate human chromosomes 1 and 20

    The sheep genome illuminates biology of the rumen and lipid metabolism

    No full text
    Sheep (Ovis aries) are a major source of meat, milk, and fiber in the form of wool and represent a distinct class of animals that have a specialized digestive organ, the rumen, that carries out the initial digestion of plant material. We have developed and analyzed a high-quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants compared with nonruminant animals
    corecore