17 research outputs found

    The Uptake of Amino Acids by Microbes and Trees in Three Cold-Temperate Forests

    Get PDF
    Amino acids are emerging as a critical component of the terrestrial N cycle, yet there is little understanding of amino acid cycling in temperate forests. This research studied the uptake and turnover of amino acid N by soil microbes and the capacity of forest trees to take up the amino acid glycine in comparison to NH4+ and NO3−. This research was conducted in three temperate forests located in northwest Connecticut, USA. The three forests differed in soil parent material and canopy tree species composition. At all three sites, amino acids were released from soil organic matter through the activity of proteolytic enzymes resulting in a pool of free amino acids in soil. Free amino acids were rapidly immobilized by soil microbes. A 15N-enriched-glycine-addition experiment also showed that a significant fraction of the amino acid N taken up by soil microbes was mineralized to NH4+ with substantial nitrification at one site. Tree species from all three sites had the physiological capacity to absorb the amino acid glycine but took up amino acid N, NH4+, and NO3− in proportion to their availability in the soil. At the site with the highest gross fluxes of N, nearly all the N in amino acids was mineralized, and fine roots assimilated inorganic N much more rapidly than amino acid N. At the two sites with slower rates of gross amino acid production, the pool of free amino acids was larger, and fine roots assimilated amino acid N almost as fast as inorganic N. This study demonstrates that amino acids are an important component of the N cycle in temperate forests

    Agricultural Management and Labile Carbon Additions Affect Soil Microbial Community Structure and Interact with Carbon and Nitrogen Cycling

    Get PDF
    We investigated how conversion from conventional agriculture to organic management affected the structure and biogeochemical function of soil microbial communities. We hypothesized the following. (1) Changing agricultural management practices will alter soil microbial community structure driven by increasing microbial diversity in organic management. (2) Organically managed soil microbial communities will mineralize more N and will also mineralize more N in response to substrate addition than conventionally managed soil communities. (3) Microbial communities under organic management will be more efficient and respire less added C. Soils from organically and conventionally managed agroecosystems were incubated with and without glucose (13C) additions at constant soil moisture. We extracted soil genomic DNA before and after incubation for TRFLP community fingerprinting of soil bacteria and fungi. We measured soil C and N pools before and after incubation, and we tracked total C respired and N mineralized at several points during the incubation. Twenty years of organic management altered soil bacterial and fungal community structure compared to continuous conventional management with the bacterial differences caused primarily by a large increase in diversity. Organically managed soils mineralized twice as much NO3 − as conventionally managed ones (44 vs. 23 μg N/g soil, respectively) and increased mineralization when labile C was added. There was no difference in respiration, but organically managed soils had larger pools of C suggesting greater efficiency in terms of respiration per unit soil C. These results indicate that the organic management induced a change in community composition resulting in a more diverse community with enhanced activity towards labile substrates and greater capacity to mineralize N

    A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation

    Get PDF
    Afforestation, the conversion of non-forested lands to forest plantations, can sequester atmospheric carbon dioxide, but the rapid growth and harvesting of biomass may deplete nutrients and degrade soils if managed improperly. The goal of this study is to evaluate how afforestation affects mineral soil quality, including pH, sodium, exchangeable cations, organic carbon, and nitrogen, and to examine the magnitude of these changes regionally where afforestation rates are high. We also examine potential mechanisms to reduce the impacts of afforestation on soils and to maintain long-term productivity. Across diverse plantation types (153 sites) to a depth of 30 cm of mineral soil, we observed significant decreases in nutrient cations (Ca, K, Mg), increases in sodium (Na), or both with afforestation. Across the data set, afforestation reduced soil concentrations of the macronutrient Ca by 29% on average (P \u3c 0.05). Afforestation by Pinus alone decreased soil K by 23% (P \u3c 0.05). Overall, plantations of all genera also led to a mean 71% increase of soil Na (P \u3c 0.05). Mean pH decreased 0.3 units (P \u3c 0.05) with afforestation. Afforestation caused a 6.7% and 15% (P \u3c 0.05) decrease in soil C and N content respectively, though the effect was driven principally by Pinus plantations (15% and 20% decrease, P \u3c 0.05). Carbon to nitrogen ratios in soils under plantations were 5.7–11.6% higher (P \u3c 0.05). In several regions with high rates of afforestation, cumulative losses of N, Ca, and Mg are likely in the range of tens of millions of metric tons. The decreases indicate that trees take up considerable amounts of nutrients from soils; harvesting this biomass repeatedly could impair long-term soil fertility and productivity in some locations. Based on this study and a review of other literature, we suggest that proper site preparation and sustainable harvest practices, such as avoiding the removal or burning of harvest residue, could minimize the impact of afforestation on soils. These sustainable practices would in turn slow soil compaction, erosion, and organic matter loss, maintaining soil fertility to the greatest extent possible

    Soil C and N Changes with Afforestation of Grasslands Across Gradients of Precipitation and Plantation Age

    Get PDF
    Afforestation, the conversion of unforested lands to forests, is a tool for sequestering anthropogenic carbon dioxide into plant biomass. However, in addition to altering biomass, afforestation can have substantial effects on soil organic carbon (SOC) pools, some of which have much longer turnover times than plant biomass. An increasing body of evidence suggests that the effect of afforestation on SOC may depend on mean annual precipitation (MAP). The goal of this study was to test how labile and bulk pools of SOC and total soil nitrogen (TN) change with afforestation across a rainfall gradient of 600–1500 mm in the Rio de la Plata grasslands of Argentina and Uruguay. The sites were all former grasslands planted with Eucalyptus spp. Overall, we found that afforestation increased (up to 1012 kg C·ha−1·yr−1) or decreased (as much as 1294 kg C·ha−1·yr−1) SOC pools in this region and that these changes were significantly related to MAP. Drier sites gained, and wetter sites lost, SOC and TN (r2 = 0.59, P = 0.003; and r2 = 0.57, P = 0.004, respectively). Labile C and N in microbial biomass and extractable soil pools followed similar patterns to bulk SOC and TN. Interestingly, drier sites gained more SOC and TN as plantations aged, while losses reversed as plantations aged in wet sites, suggesting that plantation age in addition to precipitation is a critical driver of changes in soil organic matter with afforestation. This new evidence implies that longer intervals between harvests for plantations could improve SOC storage, ameliorating the negative trends found in humid sites. Our results suggest that the value of afforestation as a carbon sequestration tool should be considered in the context of precipitation and age of the forest stand

    Nitrogen Fertilization Has a Stronger Effect on Soil Nitrogen-Fixing Bacterial Communities than Elevated Atmospheric CO2

    Get PDF
    Biological nitrogen fixation is the primary supply of N to most ecosystems, yet there is considerable uncertainty about how N-fixing bacteria will respond to global change factors such as increasing atmospheric CO2 and N deposition. Using the nifH gene as a molecular marker, we studied how the community structure of N-fixing soil bacteria from temperate pine, aspen, and sweet gum stands and a brackish tidal marsh responded to multiyear elevated CO2 conditions. We also examined how N availability, specifically, N fertilization, interacted with elevated CO2 to affect these communities in the temperate pine forest. Based on data from Sanger sequencing and quantitative PCR, the soil nifH composition in the three forest systems was dominated by species in the Geobacteraceae and, to a lesser extent, Alphaproteobacteria. The N-fixing-bacterial-community structure was subtly altered after 10 or more years of elevated atmospheric CO2, and the observed shifts differed in each biome. In the pine forest, N fertilization had a stronger effect on nifH community structure than elevated CO2 and suppressed the diversity and abundance of N-fixing bacteria under elevated atmospheric CO2 conditions. These results indicate that N-fixing bacteria have complex, interacting responses that will be important for understanding ecosystem productivity in a changing climate

    Amino Acid Cycling in Three Cold-Temperate Forests of the Northeastern USA

    No full text
    Amino acids play a critical role in soil-N cycling. Much of the current research on amino acid cycling has been conducted in arctic, alpine, boreal, and temperate grassland ecosystems. There are no comparable data for temperate forests. We quantified the concentration and production of amino acid N and inorganic N in three forests varying in parent material and tree species composition in Connecticut, USA. Soil samples were collected on three sample dates in 2001 and 2002. At all three sites, a pool of free amino acids was present in soil on all sample dates. Among-site differences in the production of amino acids were related to variations in the activity of proteolytic enzymes, the sensitivity of proteolytic enzymes to the availability of protein substrate, and the presence or absence of a surface organic horizon. Among-site differences in amino acid turnover appeared to be at least partially related to soil C-to-N ratios and their effect on C vs. N limitation to microbial function. Amino acid concentrations in the top 15 cm of mineral soil in these study sites fell within the range of reported values for ecosystems spanning a wide latitudinal gradient, including ecosystems in which amino acids are thought to contribute substantively to plant-N nutrition. The concentration of amino acid N in the organic horizons of these study sites was considerably higher than those reported in the literature. The implications of the results for N capture by temperate forest trees are discussed

    Environmental Controls on the Landscape-Scale Biogeography of Stream Bacterial Communities

    Get PDF
    We determined the biogeographical distributions of stream bacteria and the biogeochemical factors that best explained heterogeneity for 23 locations within the Hubbard Brook watershed, a 3000-ha forested watershed in New Hampshire, USA. Our goal was to assess the factor, or set of factors, responsible for generating the biogeographical patterns exhibited by microorganisms at the landscape scale. We used DNA fingerprinting to characterize bacteria inhabiting fine benthic organic matter (FBOM) because of their important influence on stream nutrient dynamics. Across the watershed, streams of similar pH had similar FBOM bacterial communities. Streamwater pH was the single variable most strongly correlated with the relative distance between communities (Spearman\u27s ρ = 0.66, P \u3c 0.001) although there were other contributing factors, including the quality of the fine benthic organic matter and the amount of dissolved organic carbon and nitrogen in the stream water (P \u3c 0.05 for each). There was no evidence of an effect of geographic distance on bacterial community composition, suggesting that dispersal limitation has little influence on the observed biogeographical patterns in streams across this landscape. Cloning and sequencing of small-subunit rRNA genes confirmed the DNA fingerprinting results and revealed strong shifts among bacterial groups along the pH gradient. With an increase in streamwater pH, the abundance of acidobacteria in the FBOM bacterial community decreased (from 71% to 38%), and the abundance of proteobacteria increased (from 11% to 47%). Together these results suggest that microorganisms, like “macro”-organisms, do exhibit biogeographical patterns at the landscape scale and that these patterns may be predictable based on biogeochemical factors

    Appendix A. A table showing selected properties of each study site.

    No full text
    A table showing selected properties of each study site
    corecore