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THE UPTAKE OF AMINO ACIDS BY MICROBES AND TREES
IN THREE COLD-TEMPERATE FORESTS

ADRIEN C. FINZI1 AND SEAN T. BERTHRONG2

Department of Biology, Boston University, Boston, Massachusetts 02215 USA

Abstract. Amino acids are emerging as a critical component of the terrestrial N cycle,
yet there is little understanding of amino acid cycling in temperate forests. This research
studied the uptake and turnover of amino acid N by soil microbes and the capacity of forest
trees to take up the amino acid glycine in comparison to NH4

1 and NO3
2. This research

was conducted in three temperate forests located in northwest Connecticut, USA. The three
forests differed in soil parent material and canopy tree species composition. At all three
sites, amino acids were released from soil organic matter through the activity of proteolytic
enzymes resulting in a pool of free amino acids in soil. Free amino acids were rapidly
immobilized by soil microbes. A 15N-enriched-glycine-addition experiment also showed
that a significant fraction of the amino acid N taken up by soil microbes was mineralized
to NH4

1 with substantial nitrification at one site. Tree species from all three sites had the
physiological capacity to absorb the amino acid glycine but took up amino acid N, NH4

1,
and NO3

2 in proportion to their availability in the soil. At the site with the highest gross
fluxes of N, nearly all the N in amino acids was mineralized, and fine roots assimilated
inorganic N much more rapidly than amino acid N. At the two sites with slower rates of
gross amino acid production, the pool of free amino acids was larger, and fine roots assim-
ilated amino acid N almost as fast as inorganic N. This study demonstrates that amino
acids are an important component of the N cycle in temperate forests.

Key words: amino acid; inorganic nitrogen; microorganism; nitrogen cycling; temperate forest.

INTRODUCTION

Research on the cycle of soil N in temperate forests
has largely focused on inorganic forms (NH4

1, NO3
2).

This focus has partly reflected a long-standing belief
that trees take up only inorganic N. It has also reflected
the belief that trees are inferior competitors to soil mi-
crobes and that only the by-products of microbial-N
metabolism (i.e., NH4

1 and NO3
2) are available for up-

take by trees (e.g., historical perspectives in Melillo
[1981], Kaye and Hart [1997], Schimel and Bennett
[2004]). Observations that net primary production
(NPP), N uptake, N fluxes in litterfall, and N use ef-
ficiency are highly correlated with the rate of net N
mineralization (e.g., Pastor et al. 1984, Nadelhoffer et
al. 1985, Zak et al. 1989, Reich et al. 1997) have also
reinforced the belief that the supply of inorganic N
regulates ecosystem processes.

Recent studies show that plants from numerous bi-
omes on earth have the physiological capacity to as-
similate organic N in the form of amino acids (e.g.,
Kielland 1997, Schmidt and Stewart 1999, Nasholm et
al. 2000, Lipson and Nasholm 2001, Bennett and Pres-
cott 2004). In all ecosystems in which amino acids have
been measured, freely extractable amino acids exist in
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soils (e.g., Kielland 1995, Raab et al. 1999, Jones et
al. 2004), and they are assimilated by plants in direct
competition with soil microbes (e.g., Nasholm et al.
1998, McFarland et al. 2002, Bardgett et al. 2003).
Amino acids can turn over extremely rapidly in boreal
forests (Jones and Kielland 2002) and temperate ag-
ronomic ecosystems (Jones 1999). In temperate agro-
nomic soils, amino acids also contribute to N miner-
alization (Barraclough 1997, O’Dowd et al. 1999, Jones
et al. 2004). Thus, it is apparent that amino acids are
a critical component of the terrestrial N cycle (Chapin
et al. 2002, Schimel and Bennett 2004).

With the past emphasis on inorganic N cycling, we
do not know the extent to which amino acids contribute
to the cycle of soil N in temperate forests. To address
the gap in our understanding of the soil N cycle, this
research addressed the following questions. What is the
rate of amino acid production in temperate forest soils?
Are amino acids readily consumed by soil microbes
and are they are substrate for mineralization? Do tem-
perate forest trees have the physiological capacity to
take up intact amino acids? At what rate are amino
acids taken up by tree roots relative to NH4

1 and NO3
2?

Are different forms of N taken up in proportion to their
availability in the field?

MATERIALS AND METHODS

Study sites

This research was conducted on two sites at the Great
Mountain Forest (GMF), Norfolk, Connecticut (the Es-
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ker and Granite sites) and one site in the Housatonic
State Forest, North Canaan, Connecticut, USA (the Do-
lomite site, all sites located at 428 N, 738159 W). From
1930 to present, the mean annual temperature in this
area is 78C, and the mean annual precipitation is 1330
mm (R. Russ, personal communication).

The three study sites are named according to the
origin of the soil parent material. The soils at the Esker
site (GMF) are derived from a glacial stream, and for-
ests grow on a thick accumulation of sand and abundant
cobbles .20 m above granite bedrock. The soils are
Entisols classified as Typic Udorthents (Hill et al.
1980). The soils are coarse textured and acidic. Of the
three sites, Esker soils have the lowest content of total
C and N (Appendix A). The site is dominated by Pinus
strobis (78% of total tree basal area [BA]), Tsuga can-
adensis (7% of BA), Acer rubrum (7% of BA), and
Betula sp. (7% of BA).

The soils at the Granite site are derived from glacial
till overlying granite bedrock. Soil development is
more extensive than at the Esker site. The soils are
Inceptisols classified as Typic Dystrochrepts (Hill et
al. 1980). The depth to bedrock is ,1 m throughout
the area. Soils at the Granite site are strongly acidic,
low in available base cations, but high in total C and
intermediate in N with a large C-to-N ratio (Appendix
A). The Granite site is codominated by Prunus serotina
(18% of BA), Fagus grandifolia (17% of BA), Acer
rubrum (17% of BA), Quercus rubra (16% of BA),
Tsuga canadensis (12% of BA), and Pinus strobis (9%
of BA).

The soils on the Dolomite site are derived from gla-
cial till overlying dolomite (CaMg(CO3)2). The soils
are mesic Inceptisols and classified as Aquic Eutro-
chrepts (Hill et al. 1980). The depth to bedrock is ,1.5
m. By comparison to the Granite and Esker sites, the
soils at the Dolomite site are finer textured with a higher
pH (Appendix A). These soils are intermediate in C
content, high in N content, and have the smallest C-
to-N ratio of the three sites (Appendix A). The Dolo-
mite site is dominated by Fraxinus americana (42% of
basal area), Acer saccharum (27% of BA), Carya ovata
(9% of BA), and Populus grandidentata (9%).

Plant and soil analyses

Four replicate 20 3 20 m plots were identified at
each site. The replicate plots were located 50–200 m
from one another. With the exception of gross prote-
olysis, all analyses were based on soil cores collected
15 September 2003. Gross proteolysis was measured
in soils collected 15 June 2001 and 1 October and 1
November 2002 (Berthrong and Finzi, in press). Two
soils cores were collected per plot per sample date at
a minimum distance of 10 m. Soil cores were taken
from the top 15 cm of mineral soil using a 5 cm di-
ameter soil bulk density sampler. The mineral soil cores
were stored on ice for transport back to the laboratory.

All measurements were made within 72 h of soil core
collections. Initially all the samples were sieved
through an 8-mm brass mesh to remove rocks and
coarse roots. The sieved samples were homogenized
by hand and stored in polyethylene bags at 48C. To
answer the questions outlined in the Introduction, the
following analyses were done: (1) the pools of amino
acid and inorganic N were extracted less than 24 h after
sample collection; (2) the rates of gross proteolysis,
gross NH4

1 cycling, and gross NO3
2 cycling began

within 24 h of sample collection; (3) the rate of N
uptake by excised fine roots was measured within 48
h of sample collection; (4) the addition of 15N-labeled
glycine to soils was started within 72 h of sample col-
lection; and (5) after 72 h subsamples of all soils were
dried at 1108C for 5 d to determine initial soil moisture
content. The two cores per plot were analyzed sepa-
rately for each measurement.

Soil N pools and fluxes

The pools of amino acid-N, NH4
1, and NO3

2 were
determined by extracting 30-g samples of soil in 100
mL of 2 mol/L KCl (Sheperd et al. 2001). Ammonium
concentrations were measured using the phenolate
method on an autoanalyzer (Lachat Quickchem 8000,
Zellweger Analytics, Milwaukee, Wisconsin, USA).
Nitrate N was determined by the hydrazine sulfate
method (Lachat Quickchem 8000). The concentration
of N in amino acids was determined by color reaction
with ninhydrin (Rosen 1957). Concentrations of amino
acid N were determined by comparing the optical ab-
sorbance (570 nm) of the samples relative to a standard
curve using leucine and correcting for contamination
by NH4

1 (Berthrong and Finzi, in press).
The rates of gross proteolysis were measured using

a modified version of the methods outlined in Watanabe
and Hayano (1995) and Lipson et al. (1999). This tech-
nique measures the accumulation of amino acids in soil
slurries in the absence of an exogenous source of pro-
tein and microbial uptake. In brief, 3-g samples of soil
were placed in 100-mL bottles to which were added 10
mL of 0.05 mol/L sodium citrate buffer. The slurries
were incubated at 228C for 5 h on a shaker table at 120
oscillations/min. A 5-h incubation was chosen because
the rate of gross proteolysis is linear over this period
as determined by the kinetics of proteolysis (Berthrong
and Finzi, in press). Each sample received an 0.4-mL
aliquot of toluene to inhibit microbial uptake of amino
acids during the incubation. Immediately following in-
cubation, 3 mL of trichloroacetic acid solution (TCA)
was added to each sample thereby halting the activity
of the proteolytic enzymes. The samples were then cen-
trifuged and filtered through Whatman #1 filter paper
(Whatman, Clifton, New Jersey, USA) and stored fro-
zen at 248C until analysis. The concentration of amino
acids was quantified using the ninhydrin procedure of
Rosen (1957). The rate of gross proteolysis was cal-
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culated as the difference between the concentration of
amino acids in soils before and after the 5-h incubation.

Gross N transformations were measured by isotope
dilution (Hart et al. 1994). Two 20-g subsamples were
taken from each sieved soil core and placed in 250-mL
plastic bottles. Both samples were initially labeled with
1 mL of a 0.6 mg/L, 99-atom%-enriched (15NH4)2SO4

solution prepared in nanopure water. Using a pipette,
the 1-mL sample of 15N was applied drop-by-drop
across the surface of the soil. One of the samples was
extracted in 2 mol/L KCl after 15 min while the re-
maining sample incubated for 24 h at 228C after which
time it was also extracted in 2 mol/L KCl. The same
procedure was repeated in a second set of 20-g samples
to which we added 1 mL of 0.9 mg/L, 99-atom%-en-
riched K15NO3.

Gross rates of NH4
1 and NO3

2 mineralization and
immobilization were calculated using the equations of
Hart et al. (1994). The initial and final concentrations
of NH4

1 and NO3
2 in the extracts were determined by

analysis on an autoanalyzer (Lachat QuickChem FIA1
8000 Series, Zellweger Analytics). The atom%-15N ex-
cess of the NH4

1 and NO3
2 in the extracts of the initial

and incubated samples was determined by diffusing the
N in each sample onto an acidified cellulose disc fol-
lowed by analysis on a mass spectrometer (Europa In-
tegra, Cheshire, UK) at the University of California,
Davis, California, USA. The diffusion procedure is de-
scribed in the next section.

15N-labelled glycine uptake by soil microbes

A 15N-enriched-glycine-addition experiment was
used to study the uptake of amino acids by soil mi-
crobes and the redistribution of amino acid N to dis-
solved organic N (DON), microbial biomass N, NH4

1,
NO3

2, and non-extractable pools in soil. This experi-
ment was conducted in the Dolomite and Granite site
soils only. Two 30-g subsamples of soil from each
sieved soil core were placed into separate 250-mL plas-
tic bottles. A 1-mL aliquot of 7.4 mg N/L, 98-atom%-
enriched glycine was added to each sample, drop-by-
drop across the surface of the soil sample. One sample
was extracted in 2 mol/L KCl after 15 min and the
second sample was extracted after exactly 24 h.

A sequential extraction procedure was used to re-
cover 15N as DON, NH4

1, NO3
2, and in microbial bio-

mass and soils (Holmes et al. 2003). The sequential
extraction procedure begins by separating the pool of
DON and inorganic N from microbial biomass and soil
N pools. Immediately after extracting with 0.5 mol/L
K2SO4, the samples were filtered through a plastic sy-
ringe fitted with a 0.45-mm filter. Forcing the super-
natant through the filter separates DON and inorganic
N from most of the N contained in floating microbial
cells and organic matter. The filtrate was then run on
an autoanalyzer for inorganic N concentrations (Lachat
QuickChem FIA1 8000 Series) and the content of 15N
in the NH4

1 and NO3
2 pools analyzed by mass spec-

trometry following the acid diffusion procedure. The
pool of extractable DON was also measured in this
extraction. A 5-mL subsample of the filtrate was per-
sulfate digested and analyzed for DON as NO3

2 on an
autoanalyzer (Cabrera and Beare 1993). The 15N con-
tent of the DON pool was also measured by mass spec-
trometry following the acid diffusion procedure.

The microbial-biomass N pool was estimated using
a modification of the fumigation-extraction technique
(Brooks et al. 1985). Briefly, the 0.45-mm filters were
placed back into the plastic bottles containing the re-
sidual soil, and both were fumigated with CH3Cl for 5
d in a vacuum desiccator. Following the 5-d fumigation
all samples were extracted in 0.5 mol/L K2SO4. The
extracts were persulfate digested, the concentration of
N in microbial biomass determined as NO3

2 on an au-
toanalyzer, and the 15N content of the microbial biomass
pool determined by mass spectrometry following the
acid diffusion procedure. The soil remaining in each
bottle was scraped into a tin dish, dried to constant
mass at 608C for 3 d, ground, and a 5-mg sample sent
for analysis of 15N content on a mass spectrometer to
estimate the non-extractable fraction in soil.

The atom%-15N excess of all fractions except soils
was determined by diffusing the N in each sample onto
an acidified cellulose disc followed by analysis on a
mass spectrometer at the University of California, Da-
vis (Brooks et al. 1989). In brief, 1 mL of the 15N-
labeled sample was added to a specimen cup containing
40 mL of 2 mol/L KCl and 6.43 mmol 14N (as
[14NH4]2SO4). The addition of 14N brought the concen-
tration and isotope ratio of N into the optimal detection
range for mass spectrometry. A cellulose disc (What-
man #3) was acidified with 10 mL of 2.5 mol/L KHSO4

and suspended on a metal wire at the top of each spec-
imen cup. To each specimen cup, we added 270 mg
MgO to volatilize the NH4

1 to NH3, which was then
trapped on the acidified cellulose disc. The diffusion
lasted for 7 d at 208C after which time the acidified
filter discs were air dried for 3 d in a desiccator with
a sulfuric acid trap, rolled into tin capsules, and then
sent for isotope analysis. The same procedure was used
to diffuse NO3

2-based samples (i.e., DON, microbial
biomass N, and NO3

2 pools) with the exception that
160 mg of Devarda’s Alloy was added to each specimen
cup. Devarda’s Alloy reduces NO3

2 to NH4
1.

Excised root nutrient uptake studies

The uptake of glycine, NH4
1, and NO3

2 was quan-
tified with the use of excised roots (e.g., Treseder and
Vitousek 2001). A 1-g subsample of the fine roots (,2
mm in diameter) was hand-picked from each replicate
core collected within each 20 3 20 m plot, rinsed free
of soil in distilled water, and combined into a single
sample. Three soil-free, 40-mg wet-mass samples of
fine roots from each plot at each site were placed into
replicate 5 3 5 cm cheesecloth bags. Root lengths var-
ied from 2 to 4.5 cm. Each fine root bag was rinsed in
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TABLE 1. Among-site and between-form comparisons of the
concentration of N (mg N/g soil) in amino acid and inor-
ganic N pools in the top 15 cm of mineral soil and the
percentage of the inorganic N pool composed of NO3

2 in
soils collected 15 September 2003.

Site
Amino acid N

(mg N/g)

Inorganic N
(NH4

1 1 NO3
2)

(mg N/g) NO3
2 (%)

Esker 2.65a,B (0.18) 3.77b,A (0.13) 21b (3)
Granite 3.53a,A (0.20) 4.02b,A (0.08) 22b (3)
Dolomite 2.30a,B (0.15) 7.50a,A (0.15) 56a (3)

Notes: Different superscript, lowercase letters indicate a
significant difference among sites (P , 0.05). Different su-
perscript, uppercase letters indicate a significant difference
between the concentration of amino acid N and inorganic N
within a site (P , 0.05). The research was conducted on two
sites at the Great Mountain Forest, Norfolk, Connecticut (the
Esker and Granite sites), and one site in the Housatonic State
Forest, North Canaan, Connecticut, USA (the Dolomite site).

0.5 mmol/L CaCl2 for 20 min. The bags were then
incubated for 30 min in 300 mmol N/L solutions of 98-
atom%-enriched 15N-glycine, 15NH4Cl, or K15NO3 con-
taining 0.5 mmol/L CaCl2 (for membrane integrity),
and 0.01 mol/L sucrose (as an energy source; Jackson
et al. 1990). After incubation, the fine root bags were
rinsed for 10 min in four different solutions of 1 mmol/
L KCl to remove any 15N adsorbed to the root (Jackson
and Reynolds 1996). Fine roots were then dried at 608C
for 4 d, ground, and analyzed for 15N content on a mass
spectrometer at the University of California, Davis. The
roots not used in uptake studies were weighed and then
dried for 4 d at 1108C to determine moisture content
and background d15N.

Data analysis

The four 20 3 20 m plots at each site were considered
replicates and statistical analysis was based on n 5 12
(3 sites 3 4 replicates). Thus all within-plot samples
were averaged prior to statistical analysis. The three
sample dates on which proteolysis was measured were
averaged prior to statistical analysis. Differences
among sites in the pools and gross fluxes of amino acid
N, NH4

1, and NO3
2 were analyzed by one-way ANOVA

with site as the main effect. The 15N-enriched glycine
tracer experiment was analyzed by repeated measures
ANOVA with the percentage recovery of 15N as the
dependent variable and site and form of recovery (i.e.,
DON, microbial biomass N, NH4

1, NO3
2, soil) as the

main effects with two levels for time (15 min, 24 h).
The excised root nutrient uptake kinetic study was an-
alyzed by two-way ANOVA with site and form (i.e.,
glycine, NH4

1, NO3
2) as the main effects. The Ryan-

Einot-Gabriel-Welsch Multiple Range Test was used to
analyze post-hoc differences among means in all sta-
tistical analyses and all analyses were carried out using
SAS (SAS 1987).

The motivation for the 15N-enriched-glycine addition
experiment was to compare the immobilization and
transformation of N in glycine between sites and among
different pools over 24 h. Total isotope recovery ranged
from 74% to 112% (see Results). To account for dif-
ferences in total isotope recovery between sites and
time periods in this study, the percentage recovery of
15N in each pool within a site and sample time was
rescaled to 100%. This was achieved by dividing the
percentage recovery of 15N within a particular form by
the total isotope recovery at that site and time period.
For example, a mean of 73% of the 15N was recovered
in the NH4

1 pool at the granite site after 15 min, when
total isotope recovery was 112%. This value was re-
scaled to 65% (i.e., 73%/112%), and so on for all other
values in the data set. The underlying assumption in
this rescaling is that the percentage recovery of 15N
within a site and sample period is representative of the
movement of N from the amino acid glycine indepen-
dent of whether the isotope was under-recovered or
over-recovered.

RESULTS

Pools and fluxes of amino acids and inorganic N

The concentration of extractable amino acid N was
highest at the Granite site and lowest at the Dolomite
site but among-site differences were not statistically
significant (Table 1). The concentration of inorganic N
was significantly higher at the Dolomite site than the
Esker and Granite sites, and significantly more of the
inorganic N was in the form of NO3

2 (Table 1). At the
Esker and Dolomite sites, the concentration of inor-
ganic N in soil was significantly higher than the con-
centration of amino acid N. At the Granite site, the
concentration of inorganic N in soils was not signifi-
cantly different than amino acid N (Table 1).

The rates of gross proteolysis, gross NH4
1 miner-

alization, and gross nitrification were significantly
higher at the Dolomite site than the Esker and Granite
sites (Table 2). Similarly, the rates of gross NH4

1 and
NO3

2 immobilization were significantly higher at the
Dolomite than the Esker and Granite sites (Table 2).
Net mineralization, calculated as the difference be-
tween the gross production and consumption of NH4

1

and NO3
2, was significantly higher at the Dolomite site

than the Esker and Granite sites.

Recovery of 15N-labeled glycine

At the Dolomite site, the percentage recovery of 15N
summed across all forms (herein ‘‘total isotope recov-
ery’’) was 112 6 9% and 82 6 9% after 15 min and
24 h, respectively. At the Granite site, total isotope
recovery was 74 6 10% and 105 6 10% after 15 min
and 24 h, respectively.

The percentage recovery of 15N-enriched glycine var-
ied among forms, between sites, and through time (Ap-
pendix B). Recovery of 15N after 15 min was signifi-
cantly greater in microbial biomass at the Granite site
than at the Dolomite site where recovery as NH4

1 was
significantly greater (Fig. 1A, B). The recovery of N
in DON, as NO3

2 and in non-extractable fractions, ac-
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TABLE 2. Gross rates of proteolysis and NH4
1 and NO3

2 production (mg N·g21·24 h21), gross rates of NH4
1 and NO3

2

immobilization (mg·g21·24 h21), and net mineralization (mg·g21·24 h21) (means, with SE in parentheses).

Research
site

Gross
proteolysis

Gross NH4
1

mineralization
Gross

nitrification
Gross NH4

1

immobilization
Gross NO3

2

immobilization
Net

mineralization

Esker 2.09b (20.17) 4.21b (20.15) 0.92b (20.24) 3.06b (20.35) 0.41 (20.14) 1.66b (20.38)
Granite 2.65b (20.16) 4.49b (20.86) 1.00b (20.07) 2.82b (20.41) 0.67 (20.22) 2.00b (20.66)
Dolomite 4.04a (20.62) 7.21a (20.57) 4.91a (20.68) 4.85a (20.38) 1.21 (20.85) 6.06a (20.93)

Note: Different superscript letters within a column indicate a significant (P , 0.05) difference in N transformation rate
among sites.

FIG. 1. Percentage recovery of 15N-enriched glycine in dissolved organic nitrogen (DON), microbial-biomass N (MB-N),
NH4

1, NO3
2, or non-extractable soil pools (‘‘soil’’) after 15 min and 24 h at each site (means 1 1 SE). Different letters above

bars indicate a significant (P , 0.001) difference in the percentage recovery of 15N within a site and time period. Asterisks
above the bars indicate a significant between-site difference in the percentage recovery of 15N within a given pool: **P ,
0.01; ***P , 0.001.

counted for ,10% of isotope recovery at both sites.
After 24 h, the single largest recovery of 15N was as
NO3

2 at the Dolomite site (Fig. 1C). By contrast, most
of the 15N remained in microbial biomass and NH4

1

pools at the Granite site with little nitrification (Fig.
1D). The recovery of 15N in microbial biomass was not
significantly different between the two sites, but re-
covery as NH4

1 was significantly greater at the Granite
site (Fig. 1C, D). The recovery of 15N within DON and
non-extractable pools was still ,10% of that initially
applied at both sites (Fig. 1C, D).

N uptake by fine roots

The physiological capacity of plant roots to take up
N varied significantly among forms and sites (form 3

site interaction, P , 0.0001). Fine roots from all sites
took up NH4

1 significantly (P , 0.001) more rapidly
than glycine, which was taken up significantly more
rapidly than NO3

2 (Fig. 2A). Fine roots collected from
the Dolomite site took up NH4

1 and NO3
2 significantly

more rapidly than fine roots from the Granite and Esker
sites (Fig. 2A). The rate of glycine uptake was signif-
icantly faster at the Dolomite and Esker sites than at
the Granite site. Fine roots from the Dolomite site had
a physiological capacity to take up inorganic N (i.e.,
the sum of NH4

1 and NO3
2 uptake rates in Fig. 2A)

fivefold greater than that of glycine. The ratio of in-
organic-N uptake to glycine uptake was ;2 at the Esker
and Granite sites, significantly lower than that observed
at the Dolomite site (Fig. 2B).
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FIG. 2. (A) The uptake rate of 300 mmol/L solutions of
NH4

1 (black bars), glycine (gray bars), and NO3
2 (white bars)

in roots taken from the three different sites (means 1 1 SE).
Superscript letters indicate a significant (P , 0.001) among-
site difference in the uptake of a particular form of N. (B)
The ratio of inorganic N uptake (sum of NH4

1 uptake and
NO3

2 uptake in panel (A), DIN) to glycine uptake in excised
roots (white bars) and the ratio of inorganic N to amino acid
(AA) N concentrations in the field (gray bars; data from Table
1). Superscript letters indicate a significant difference (P ,
0.01) in ratios among sites. The dashed line in (B) corresponds
to a ratio of 1.

DISCUSSION

There is an emerging consensus that amino acids are
a critical component of the terrestrial N cycle (Neff et
al. 2003, Schimel and Bennett 2004). While amino acid
cycling has been widely studied in arctic (e.g., Jones
and Kielland 2002), alpine (e.g., Lipson et al. 1999,
Raab et al. 1999), boreal (e.g., Nasholm et al. 1998,
McFarland et al. 2002), and temperate agronomic eco-
systems (e.g., Barraclough 1997, Jones et al. 2004,
2005), there are virtually no comparable data on amino
acid cycling in temperate forests. This study clearly
demonstrated that amino acids are a critical component
of the N cycle in temperate forests. Amino acids were

rapidly released from soil organic matter (SOM)
through the activity of proteolytic enzymes (Table 2),
a pool of freely extractable amino acids was present in
soils (Table 1), amino acids were rapidly immobilized
and mineralized by soil microbes (Fig. 1), and tem-
perate forest trees had the capacity to take up the amino
acid glycine and appeared to assimilate amino acid N
relative to inorganic N in proportion to their abundance
in the soil (Fig. 2).

All the soil-N cycling measurements made in this
study were conducted in the laboratory, some mea-
surements were made in different years, and both sourc-
es of variation could affect the interpretation of data.
For example, proteolysis was measured in soil slurries,
a condition that is not present in these upland soils.
Similarly, gross fluxes of NH4

1 and NO3
2 were mea-

sured in sieved soils, and sieving soils can increase the
availability of C and N for microbial metabolism, there-
by affecting N cycling. Finally, proteolysis was mea-
sured in 2001 and 2002, whereas gross N cycling was
measured in 2003. Despite these limitations, this re-
search provided important insights into amino acid cy-
cling in these temperate forests (listed above) that are
discussed in detail in the following section.

Similarly, the data on N uptake from excised fine
roots must be interpreted with care (e.g., Nasholm et
al. 2000). First, this study examined the physiological
capacity of fine roots to take up different forms of N
at a single concentration (i.e., 300 mmol N/L). It is not
known whether the uptake of these different forms of
N would follow the same relative ranking across a con-
centration gradient. Second, nutrient uptake studies us-
ing excised roots typically exclude mycorrhizal fungi
that can be very important to plant N capture (Abu-
zinadah and Read 1989, Hodge et al. 2001). Third, the
species of the roots were unknown and could have var-
ied from sample to sample within a site. Fourth, the
cut ends of the roots were placed directly into the 15N
solutions leaving open the possibility that some portion
of the recovered 15N diffused into the roots through the
cut ends. Finally, glycine, NH4

1, and NO3
2 have dif-

ferent mobility in soil that could affect root physiology
and the appearance of affinity for different forms. NH4

1

is positively charged and adsorbs readily onto the cat-
ion-exchange capacity of temperate forest soils ren-
dering NH4

1 largely immobile. By contrast, glycine and
NO3

2 are neutral and negatively charged, respectively;
they do not adsorb as readily onto exchange sites in
soil; and both forms are mobile in soil water, often
moving to existing root surfaces through transpirational
water (Raven et al. 1992, Chapin et al. 2002). There-
fore, plants may not produce as many carriers for the
uptake of glycine and NO3

2 as they might for NH4
1,

giving rise to the pattern of N uptake observed in this
study. Despite these uncertainties however, there were
very clear among-site variations in the form of N taken
up that reflected variations in the pool sizes and fluxes
of amino acids and inorganic N among the three forest
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types. The excised root N uptake data therefore appear
to be illustrative of broad, among-site patterns in N
uptake by dominant tree species.

Soil N cycling

Schimel and Bennett (2004) proposed that the de-
polymerization of N bound in SOM controls the rate at
which N can be converted to available forms. Amino
acids are one type of N that is depolymerized from SOM
via the activity of proteolytic enzymes (Watanabe and
Hayano 1995), and previous studies have shown that
amino acids can be a substrate for N mineralization (Bar-
raclough 1997, Jones et al. 2004). The data collected in
this study are consistent with the hypothesis that the rate
of depolymerization controls the transformation of N to
available forms. The rate of proteolysis was positively
correlated with the rate of gross NH4

1 mineralization (s
5 0.75, P , 0.01). Similarly, the rate of gross NH4

1

mineralization was positively correlated with the rate of
gross nitrification (s 5 0.87, P , 0.001). Although there
are many other forms of organic N that can be depo-
lymerized from SOM (e.g., nucleic acids and amino sug-
ars; Schimel and Bennett 2004), in these temperate for-
ests the flow of N to available forms is highly correlated
with, and therefore possibly regulated by, the release of
amino acids from SOM.

Amino acids can turn over extremely rapidly in soil.
Jones (1999) found that the mean half-life of amino
acids in surface soils (0–10 cm depth) collected from
10 agroecological zones in the United Kingdom was
1.6 6 0.6 h. Similarly, Jones and Kielland (2002) es-
timated that the pool of amino acid N turned over ;20
times per day in the organic horizons of black spruce
forests in Alaska, USA. The 15N-enriched glycine study
presented here also demonstrated the potential for rapid
amino acid N turnover (Fig. 2). Within 15 min of ap-
plication ;54% of the 15N in the labeled glycine was
recovered as NH4

1 (Fig. 1). After 24 h, there was sub-
stantial nitrification, accounting for ;26% of the N
originally applied as glycine (Fig. 1).

Soil C-to-N ratios have long been recognized as a
control over net mineralization and nitrification (e.g.,
Pastor et al. 1984, Ollinger et al. 2002) by dictating
the degree to which microbial function is C and/or N
limited (Paul and Clark 1996). Typically, narrow C-to-
N ratio soils have high rates of net mineralization be-
cause microbes are more strongly C limited than N
limited (e.g., Finzi et al. 1998). By contrast, wide C-
to-N ratio soils have low rates of net mineralization
because microbial function remains strongly N limited.
Hypothetically, the same principle could explain the
rapid turnover of amino acids in soil (e.g., Jones and
Kielland 2002, Jones et al. 2004). Amino acids are a
labile source of both C and N for microbial metabolism.
Amino acids taken up by microbes in narrow C-to-N
ratio soils are likely to be assimilated for their C con-
tent, thereby releasing NH4

1 to the soil solution (Jones
et al. 2004, Schimel and Bennett 2004). By contrast,

in ecosystems with wide C-to-N ratios microbial func-
tion is likely to be more strongly N limited than C
limited and much of the amino acid N taken up by
microbes would be retained within microbial biomass
(Schimel and Chapin 1996).

The content of N in soil at the Dolomite site was
significantly greater than at the Granite site (491 6 23
and 392 6 9 g N/m2, respectively). Similarly, the C-
to-N ratio of soil at the Dolomite site was significantly
lower than at the Granite site (12.7 6 0.3 and 19.9 6
0.6, respectively, Appendix A). Consistent with the hy-
pothesis that soil C-to-N ratios control the turnover of
N within amino acids, microbial-15N immobilization of
labeled glycine was significantly lower and minerali-
zation to 15NH4

1 significantly higher at the Dolomite
site after 15 min than at the Granite site (Fig. 1A, B).
After 24 h, significantly more of the 15NH4

1 at the Do-
lomite site was nitrified whereas there was much great-
er retention of 15N within microbial biomass and NH4

1

pools at the Granite site (Fig. 1C, D). Thus it appears
that amino acids are principally, but not exclusively,
used as a labile source of C at the Dolomite site whereas
at the lower-N-status granite site, microbial function
appears to be more strongly N limited with efficient
recycling of amino acid N within microbial biomass
and NH4

1 pools (Fig. 1).

Plant uptake

Fine roots of the trees at each site had the physiological
capacity to take up the amino acid glycine (Fig. 2). There
were, however, important among-site differences in the
rate at which glycine was taken up relative to inorganic
N (Fig. 2B), and these differences appeared to reflect
among-site variation in available forms (e.g., Raab et al.
1999, Weigelt et al. 2005). Fine roots of the trees from
the Dolomite site took up inorganic N significantly more
rapidly than glycine (Fig. 2B), and the availability of
inorganic N at this site was significantly greater than
amino acid N (Tables 1 and 2). By contrast, the rate of
inorganic-N uptake relative to glycine uptake was sig-
nificantly lower at the Esker and Granite sites (Fig. 2B),
where the availability of amino acid N in soil was higher
(Tables 1 and 2). Additional support for this interpretation
of the data comes from Berthrong and Finzi (in press),
who measured the concentration of extractable amino acid
N and inorganic N at the Esker, Granite, and Dolomite
sites at three points during the growing season in 2001
and 2002. They found that the concentration of inorganic
N was significantly higher than amino acid N on four of
six sample dates at the Dolomite site. By contrast, the
concentration of amino acid N was significantly higher
than inorganic N on four of six sample dates at the Granite
site. The Esker site was intermediate in that inorganic N
concentrations were significantly higher than amino acid
N on one sample date but on two other sample dates
amino acid N was significantly higher than inorganic N
(Berthrong and Finzi, in press).
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Excised root nutrient uptake studies show that in cold
ecosystems plant species take up glycine more rapidly
than NH4

1 (Chapin et al. 2002). The ratio of glycine
to NH4

1 uptake in boreal trees is ;1.3 (Chapin et al.
1986, Nasholm et al. 1998) and increases to 2.1 in arctic
vascular plants (Chapin et al. 1993, Kielland 1994) and
5 in nonvascular arctic plants (Kielland 1997). The
ratio of glycine to NH4

1 uptake in this study ranged
from 0.53 at the Esker site to 0.42 and 0.19 at the
Granite and Dolomite sites, respectively. Variations in
glycine-to-NH4

1 uptake ratios from artic tundra to bo-
real and temperate forests coincide with a latitudinal
gradient in net N mineralization (lowest in arctic and
highest in temperate forests; Nadelhoffer et al. 1985,
Giblin et al. 1991, Shaver et al. 1991, Ruess et al. 1996,
Reich et al. 1997). This analysis raises the hypothesis
that amino acids contribute less to plant growth and
forest productivity in the temperate zone than at higher
latitudes (Schimel and Bennett 2004).

Conclusions

To our knowledge this is the first study of amino acid
cycling in temperate forests that linked the production
and turnover of amino acids to patterns of root-N up-
take. These data clearly showed variation in the pro-
duction and turnover of amino acids among three cold-
temperate forests (Table 2, Fig. 1) and significant dif-
ferences in the rate of glycine vs. NH4

1 vs. NO3
2 uptake

by dominant tree species at each site (Fig. 2). The data
collected in this study support the hypothesis that the
N status of an ecosystem can have a significant effect
on amino acid vs. inorganic-N availability for plant
growth (Schimel and Bennett 2004). In particular, the
high-N-status Dolomite site cycled N significantly
more rapidly than the lower-N-status Esker and Granite
sites (Table 2, Fig. 1). At the Dolomite site, N uptake
by roots was faster than at the Granite site, with much
greater uptake rates for inorganic N than amino acid
N (Fig. 2). The opposite was true at the Esker and
Granite sites where rates of amino acid cycling and N
mineralization were slower (Table 2), the pool sizes of
amino acid N and inorganic N were similar in size
(Table 1), and where tree roots took up the amino acid
glycine at a rate much more comparable to inorganic
N. As more studies begin to compare rates of amino
acid and inorganic N cycling with patterns of nutrient
capture in fine roots, we will increasingly understand
the importance of amino acids to the cycle of soil N
and as a form of N that supports terrestrial productivity.
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APPENDIX A

A table presenting selected properties of each study site is available in ESA’s Electronic Data Archive: Ecological Archives
E086-184-A1.

APPENDIX B

A table presenting results of the repeated-measures ANOVA for the percentage of recovery of 15N-labeled glycine between
sites is available in ESA’s Electronic Data Archive: Ecological Archives E086-184-A2.
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