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Abstract 

We investigated how conversion from conventional agriculture to organic management affected the 
structure and biogeochemical function of soil microbial communities. We hypothesized the following. (1) 

Changing agricultural management practices will alter soil microbial community structure driven by 
increasing microbial diversity in organic management. (2) Organically managed soil microbial 

communities will mineralize more N and will also mineralize more N in response to substrate addition 
than conventionally managed soil communities. (3) Microbial communities under organic management 

will be more efficient and respire less added C. Soils from organically and conventionally managed 
agroecosystems were incubated with and without glucose (13C) additions at constant soil moisture. We 
extracted soil genomic DNA before and after incubation for TRFLP community fingerprinting of soil 

bacteria and fungi. We measured soil C and N pools before and after incubation, and we tracked total C 
respired and N mineralized at several points during the incubation. Twenty years of organic management 
altered soil bacterial and fungal community structure compared to continuous conventional management 
with the bacterial differences caused primarily by a large increase in diversity. Organically managed soils 

mineralized twice as much NO3 − as conventionally managed ones (44 vs. 23 μg N/g soil, respectively) 
and increased mineralization when labile C was added. There was no difference in respiration, but 

organically managed soils had larger pools of C suggesting greater efficiency in terms of respiration per 
unit soil C. These results indicate that the organic management induced a change in community 

composition resulting in a more diverse community with enhanced activity towards labile substrates and 
greater capacity to mineralize N. 
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Introduction 

In most unmanaged ecosystems, soil carbon (C) and nitrogen (N) cycles are tightly linked through 
microbial processes, such as decomposition and N mineralization, but conventional agricultural 
practices decouple these cycles. Nitrogen fertilizer application in conventional systems aims to 
replace microbially mediated N mineralization and supply N directly to plants. Though this shift 
to fertilizer N can increase crop production, fertilizer application requires energy consumption and 
can have deleterious impacts through increased leaching and gaseous losses of N [1–4]. In contrast, 
organic management practices, particularly crop rotations including legumes and cover cropping, 
can produce a more tightly coupled cycle of C and N and reduce N losses [5]. However, how soil 
microbial communities, agricultural management, and soil processes, such as decomposition and 
N mineralization, influence each other are not yet well understood [6–8]. 

The composition and activity of the soil microbial community is influenced by ecosystem state 
factors (e.g., climate, soil type), plant species composition and, farming practices in 
agroecosystems [9–11]. Organic management practices using diverse rotations and additions of 
organic residues affect microbial community structure over the long term through buildup of soil 
organic matter (SOM) and changes in SOM chemistry [6, 7, 12–14]. In addition, greater crop 
diversity alters plant litter inputs and can presumably increase the number of ecological niches 
available for soil microbes [7, 11]. The structure of microbial communities can in turn have 
important implications for the rates of soil processes. For example, variation in microbial 
community structure in soils has been observed to influence rates of denitrification, nitrification, 
and nitrogen fixation [15–20]. This suggests that long-term organic management will shift 
microbial community composition and diversity relative to conventionally managed soils and that 
these changes will have qualitative and quantitative impacts on soil processes [7, 9, 21, 22]. 

Labile substrates, such as root exudates or litter leachates, are the key link between rates of 
decomposition, N mineralization, and the structure of the microbial community. Since 
heterotrophic soil microbes are most commonly limited by carbon availability, increases of easily 
used carbon substrates can lead to rapid increases in microbial biomass and decomposition of more 
recalcitrant SOM [23–25]. This increased rate of decomposition, also known as the priming effect, 
can also increase N mineralized from recalcitrant organic matter [26]. Increased N mineralization 
increases the amount of N available to plants [26, 27]. This coupled cycling is particularly 
important in minimizing potential leaching losses of inorganic N, since unlike synthetic fertilizer 
application, this process leads to N being mineralized in response to plant demand and hence more 
likely to be assimilated by plants and less likely to be lost via leaching and other N loss pathways 
[12, 26, 28]. 

This project examined the impact of agricultural management on microbial community structure, 
and the ability of these communities to use labile carbon substrates and to mineralize N. We 
examined these questions using microcosms with soil from adjacent fields with identical soil types, 
but contrasting management regimes. We used multiple small pulsed C substrate additions that 
mimic plant root inputs to test for interaction between management type and labile substrate 
availability. We tested several specific hypotheses. (1) Management will lead to distinct soil 
bacterial and fungal communities with greater diversity in organically managed soils than 

http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR1
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR4
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR5
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR6
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR8
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR9
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR11
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR6
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR7
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR12
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR14
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR7
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR11
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR15
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR20
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR7
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR9
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR21
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR22
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR23
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR25
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR26
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR26
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR27
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR12
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR26
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR28
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conventionally managed systems. (2) Organically managed soils will mineralize more N than 
conventionally managed soils and will also mineralize more N in response to substrate addition. 
(3) Microbial communities from organically managed soils with higher quality and quantity of 
SOM will be more efficient and respire less added substrate than conventionally managed soils. 
The results of this study will elucidate mechanisms that link soil microbial communities, plant root 
inputs, and soil N supply. 

Methods 

Site Description and Soil Sampling 

We identified four sites within 3 km of Penn Yan, NY, USA (42°39′N, 77°3′W), located on the 
same soil series, Honeoye (fine-loamy, mixed, active, mesic Glossic Hapludalfs). Two sites were 
conventionally managed for field corn and occasionally legumes (Conv sites). The other two sites 
were organically managed with occasional additions of composted manure and a multiyear rotation 
of soybean, winter wheat, red clover (plowed down as a green manure), field corn, kidney beans, 
and spelt (Org sites). All sites were tilled, either in preparation for planting (Conv) or for weed 
control (Org). The Org sites had been managed organically for 20 years at the time of sampling. 
Prior to transition to organic practices, the Org sites had been conventionally managed with 
rotations and practices similar to the Conv fields. Earlier work at these farms indicates that the 
Conv fields receive greater total N inputs, mainly in the form of fertilizer N, while the Org fields 
operate with a smaller N surplus derived mostly from legumes [29]. All sampling plots were placed 
in areas of the fields that were planted with corn the previous planting season and were harvested 
prior to soil sample collection. Three of the sites were adjacent to each other but separated by 
drainage ditches with the fourth less than 500 m away separated by a road. We measured several 
background soil biogeochemical characteristics to establish basic differences between 
managements (Table 1). 

Table 1  

Initial soil characteristics 

Management pH Total 
C (%) 

Total N 
(%) TEC TEN MBC MBN fPOM 

C 
fPOM 
N 

oPOM 
C 

oPOM 
N 

Conventional 6.85 
(0.31) 

0.96 
(0.04) 

0.09 
(0.007) 

21.3 
(2.8) 

4.38 
(1.3) 

624 
(57) 

20.7 
(0.10) 

586 
(45) 

26.6 
(0.79) 

1005 
(258) 

53.0 
(11) 

Organic 7.04 
(0.25) 

1.22 
(0.05) 

0.12 
(0.01) 

25.0 
(0.85) 

8.97 
(2.2) 

620 
(68) 

22.3 
(0.47) 

541 
(99) 

26.2 
(4.3) 

1308 
(88) 

80.7 
(6.9) 

All analyses in units of μg C or μg N g−1 dry soil, except pH and total soil C and N in % by dry soil mass. Values 
represent means with standard errors in parentheses. Total soil C and total soil N (in italics) differed significantly 
between organic and conventional (ANOVA, p < 0.05) 

TEC or TEN = total 2 M KCl extractable C or N, MBC microbial biomass C, MBN microbial biomass N, fPOM free 
particulate organic matter, oPOM occluded particulate organic matter 

 

http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR29
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Tab1
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We sampled the top 10 cm of soil in January 2010 after gently removing the snow pack layer 
(approximately 20 cm deep at the time of sampling). Samples were collected by driving a 10-cm-
diameter stainless steel core into the soil then removing the intact core by excavating gently around 
the outside perimeter of the core. At each site, we collected three cores in random locations 10 m 
apart, which were later composited to reduce the effects of fine scale spatial heterogeneity. 
Samples were stored on ice in polyethylene bags for transport back to the laboratory. To simulate 
spring thawing, field frozen soils were thawed at 4 °C. The bottom of the core was covered with 
cheese cloth to allow melt water to drain. Soils were thawed for 2 days and sieved (2 mm) to 
remove large rocks and roots. Sieved soils were stored at 4 °C for less than 24 h before 
subsampling. Subsamples were oven dried at 105 °C to determine gravimetric soil moisture, stored 
at −80 °C for later DNA extraction, or transferred to microcosms. 

Incubation Conditions, Isotopic Labeling, Leachate Collection and Analysis of 
Mineralization 

The goal of our microcosm design was to simulate conditions where the soils received periodic 
rainfall events and bursts of root exudation. To accomplish this, soil microcosms were constructed 
from disposable liquid filtration units (Fig. S1). This design had the added advantage of allowing 
us to add substrate in liquid form while controlling soil moisture content and preventing buildup 
of soluble N molecules, like nitrate (NO3 −), from microbial processes. Each microcosm had a 
glass fiber filter (Whatman 934-AH) secured with silicone sealant above a 0.2-μm PES membrane. 
A 50-g dry equivalent of soil was placed on top of the glass fiber filter around a 2.5-cm-diameter 
plug of loosely packed PTFE chips to facilitate drainage. For each site, four microcosms were 
constructed. To measure net N mineralization, 25 ml of 0.01 M calcium chloride (CaCl2) was 
added gently to the soil surface (and avoiding the PTFE plug) and filtered into a collection vessel 
using a vacuum pump. This liquid addition simulates the amount and ionic concentration of a 
spring rainfall event in this region. Resulting filtered liquid was removed from the collection vessel 
and stored at −40 °C. Microcosms were incubated at 23 °C in the dark. Simulated rainfall and 
mineralized N collection was repeated at 3, 13, 28, 58, and 97 days after the incubation began. 
Ammonium (NH4 +) and NO3 − in the filtered solution were quantified colorometrically using the 
NED-sulfanilamide and hypochlorite–phenolate methods on an ACQ2 autoanalyzer (Seal 
Analytical, Mequon, WI). Total dissolved organic C was quantified in leachates by Pt-catalyzed 
combustion in a total organic C analyzer (TOC-V; Shimadzu Corp., Columbia, MD). 

For each site (2 Org, 2 Conv), two microcosms were designated “pulsed priming”, and two 
“control”. Pulsed samples received 125 μg of 98 % isotopically enriched 13C glucose (50 μg C, or 
1 μg C g dry soil−1) after each rainfall and mineralization interval throughout the incubation and 
were moistened to 50 % water holding capacity with deionized water. The amount of glucose 
added was chosen based on a goal of ~1 % addition of C of the total microbial biomass C pool. 
This relatively small priming addition was selected to avoid a possible artifact of “apparent 
priming”, which results from a large dose causing a major growth of microbial biomass followed 
by a population crash that artificially inflates estimates of respiration derived from SOM priming 
[23]. The dose also mimics an amount of root exudate that would prime microbial activity in the 
field. Control microcosms received only deionized water. Water holding capacity of 50 % was 

http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR23


5 
 

chosen to achieve ~70 % water filled pore space in these soils based on soil texture, which is the 
optimal water content for respiration [30, 31]. At the conclusion of the incubation (day 97), 
subsamples of soil were taken for measurement of microbial biomass C and N and genomic DNA 
(stored at −80 °C). A schematic of the incubation and soil processing is presented in Fig. S2. 

DNA Extraction, Amplification, TRFLP, and Quantitative PCR 

Genomic DNA from subsamples of soil was extracted using the Powersoil DNA extraction kit 
(MoBio Labs, Carlsbad, CA). Three replicates of 0.5 g soil per microcosm were extracted to reduce 
potential bias from soil microsite heterogeneity. DNA was extracted at the beginning and end of 
the incubation due to the destructive nature of the soil sampling needed to extract DNA. To further 
purify and concentrate the extractions, the three replicate extractions per microcosm were 
combined and precipitated with ethanol [32]. 

We analyzed the microbial community structure using terminal restriction fragment length 
polymorphism analysis (TRFLP) [33–35]. To perform TRFLP, bacterial 16S rRNA genes were 
amplified using the universal primers Bac8f with a 5′ end 6-FAM label (5′-
AGAGTTTGATCCTGGCTCAG-3′) and unlabelled primer Univ1492r (5′-
GGTTACCTTGTTACGACTT-3′) [36]. Fungal 28S rRNA genes were amplified using the fungal 
universal primers LR0R (5′-ACCCGCTGAACTTAAGC-3′) and LR5 (5′-
TCCTGAGGGAAACTTCG-3′) [37, 38]. Each 25 μl PCR reaction contained a final concentration 
of 1.5 μM of 6-FAM-labeled forward primer, 0.5 μM unlabelled reverse primer, 1× amplitaq gold 
buffer (Applied Biosystems, Carlsbad, CA), 1 mM magnesium chloride (MgCl2), 0.5 mg ml−1 
bovine serum albumin (BSA), and ~15 ng template DNA. Cycling conditions were 10 min at 
95 °C, 35 cycles of 30 s at 95 °C, 30 s at 50 °C, 45 s at 72 °C, and a final extension of 10 min at 
72 °C. We ran three replicate amplifications per sample and composited the products and cleaned 
them using Wizard PCR cleanup kits (Promega, Madison, WI). Amplifications were replicated to 
reduce potential PCR biases and to produce enough DNA for subsequent restriction digestion and 
fragment analysis. Cleaned PCR products were digested with the restriction enzyme HaeIII 
(Promega) as per the manufacturer’s directions in a 20-μl reaction. The digests were incubated in 
a 37 °C water bath for 4 h and then incubated in a heating block at 70 °C for 10 min to deactivate 
the restriction enzyme. Digested PCR products were cleaned with a Performa DTR 96-well 
cleanup system (Edge Biosystems, Gaithersburg, MD). Cleaned digests were dried in a rotary 
evaporator and resuspended in 9.85 μl of formamide and 0.15 μl of 500 LIZ size standard (Applied 
Biosystems). Terminal restriction fragments (TRFs) in the samples were quantified using a 
3730XL gas capillary DNA sequencer (Applied Biosystems). 

We quantified the abundance of bacterial and fungal small subunit rRNA (16S or 18S) copies 
using published methods [39, 40]. The primer pair F515 (5′-GTGCCAGCMGCCGCGGTAA-3′) 
and R806 (5′-GGACTACHVGGGTWTCTAAT-3′) was used for bacteria, and Nu-SSU-0817 F 
(5′-TTAGCATGGAATAATRRAATAGGA-3′) and Nu-SSU-1196R (5′-
TCTGGACCTGGTGAGTTTCC-3′) was used for fungi [39, 41]. To estimate the abundances of 
rRNA gene copies, we used standard curves from 10-fold serial dilutions of 16S or 18S amplicons 
generated using the same primers from isolates of Klebsiella pneumonia or Fusarium solani. 
Twenty-five microliter reactions were run with 12.5 μl of QuantiFast SYBR Green qPCR 

http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR30
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR31
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR32
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR33
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR35
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR36
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR37
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR38
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR39
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR40
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR39
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR41
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mastermix (Qiagen, Valencia, CA, USA), 0.5 μM final concentration of the forward and reverse 
primers each, 5 ng of template DNA, and sterile water on a Bio-Rad C1000/CFX96 thermocycler 
(Bio-Rad, Hercules, CA, USA). We used the manufacturer’s suggested 2-step thermocycler 
conditions of 95 °C for 5 min followed by 40 cycles of 95 °C for 10 s and 55 °C for 10 s. 

TRFLP Data Analysis 

Size standards were applied to the fragments using Peak Scanner ver. 1.0 (Applied Biosystems). 
We eliminated all peaks outside the range of the standards (50–800 bp) and any peaks below 50 
units of height, and we used the Local Southern method of size calling. Using the online software, 
T-REX [42], we filtered noisy peaks using a standard deviation multiplier of 1 [43]. We aligned 
peaks across samples using the peak aligning algorithm in T-REX with a clustering threshold of 
0.5 bp [44]. We then relativized peak areas within a given sample to the total peak area within each 
sample to create a matrix of TRF relative abundance by sample and averaged the two laboratory 
replicate microcosms per treatment [44]. To normalize the data, we took the square root of the 
relative abundance for subsequent analyses. We relativized, averaged the technical replicates, and 
normalized in order to make all samples directly comparable (i.e., removed background variability 
due to variation in total sample fluorescence or sequencer read variation), and we used the 
calculated relative abundance as the input for all subsequent analyses. 

Non-metric multidimensional scaling (NMS) was performed in PC-ORD ver. 5.31 (MjM 
Software, Gleneden Beach, OR, USA) to visualize overall differences in bacterial and fungal TRF 
patterns across managements and treatments. NMS was performed using the Sorenson/Bray–
Curtis distance metric and random starting configurations with 40 runs with real data and 50 runs 
with randomized data for a Monte Carlo analysis. To test if management type or C treatment had 
a significant impact on TRF profile, we used Permutation-based Multivariate Analysis of Variance 
(PerMANOVA) in PC-ORD using the Sorenson/Bray–Curtis distance metric [45]. To identify 
which TRFs were driving differences between different treatment and management communities, 
we performed two-way cluster analysis in PC-ORD [45] based on a similar analysis approached 
used by Angel et al. [46]. Briefly, two-way clustering performs simultaneous hierarchical 
clustering on both samples (treatments and managements) and TRFs, and produces a two 
dimensional heat map based on relative TRF abundance with dendrograms for both samples and 
TRFs. Samples that cluster together in the sample dendrogram have similar compositions of TRFs, 
whereas TRFs in the TRF dendrogram cluster together when they appear in similar abundance in 
the same samples. For the clustering analysis parameters, we used the Sorenson/Bray–Curtis 
distance metric with flexible beta linkage (β = −0.25). Diversity of the microbial community was 
measured by Shannon’s index (H′), which we calculated using EstimateS (Robert K Colwell 
software, Stoors, CT). The relationship between TRF diversity and true microbial diversity can 
break down with highly diverse microbial communities, however, with less diverse microbial 
communities such as those found in agricultural mineral soils H′ is a reasonable estimate of true 
microbial diversity [36, 47, 48], and recent studies have found similar patterns of diversity between 
soil microbial diversity measured with TRFLP and pyrosequencing [36, 49]. 

Respiration, Soil C and N, and Microbial Biomass Measurements 

http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR42
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR43
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR44
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR44
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR45
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR45
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR46
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR36
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR47
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR48
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR36
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR49
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To measure total C respired and its proportion of 13C, we placed a CO2 trap of 25 ml of 0.5 M 
potassium hydroxide (KOH) in a flask on top of the PTFE plug and sealed the incubator with a 
plastic lid (Fig. S1). After each simulated rainfall, we removed, saved, and replaced the 0.5 M 
KOH and resealed the incubators with parafilm. Preliminary studies were conducted to determine 
the CO2 saturation point of the traps, and 0.5 M KOH was chosen since it was the lowest 
concentration that would not saturate over the course of an incubation step. In order to ensure that 
we had complete and accurate recovery of CO2, we tested the KOH trap method by placing a KOH 
trap in an incubator with no soil but 2 ml of 2 M K2CO3in a beaker. We added 12 M HCl to the 
K2CO3 using a syringe through the parafilm seal to release 2 mmol of CO2, and we found we could 
measure CO2 produced after 24 h within 2 %. We measured the total amount of CO2 respired by 
the soils and captured by the KOH by the difference in electrical conductivity of the trap before 
and after the incubation step [50].We then added strontium chloride (SrCl2) solution in excess 
(5 ml of 5 M) to the spent KOH trap to form a strontium carbonate (SrCO3) precipitate. Dried 
ground precipitate was mixed with five times the precipitate mass of vanadium oxide (V2O5), and 
packed it in tin capsules for 13C isotopic analysis. The elemental ratio of 13C and 12C was 
determined on a PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20–20 
isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK). 

For microbial biomass C and N pools, we used a chloroform fumigation direct extraction procedure 
both pre and post incubation [51, 52]. Briefly, two 10-g subsamples of soil were placed in 50 ml 
centrifuge tubes. To one unfumigated tube we added 30 ml of 1 M potassium chloride (KCl), shook 
longitudinally for 30 min at 120 oscillations/min, and then centrifuged at 10,000 × g for 5 min. We 
filtered the resulting supernatant through Whatman #1 filter paper and stored at −20 °C. For the 
other subsample, we suspended a cotton ball above the soil and added 2 ml of chloroform and 
sealed the tube. The tube was incubated in the dark for 5 days, after which we removed the cotton 
ball, allowed the tubes to ventilate for 1 h without a cap, and then extracted the soils in the same 
manner as the unfumigated subsamples. Total amounts of C and N in microbial biomass were 
determined as the difference between the total C and N in the supernatants of unfumigated and 
fumigated soil samples. Total dissolved C and N were determined by combustion in a total organic 
C and N analyzer (TOC-V; Shimadzu Scientific, Columbia, MD, USA). Total KCl extractable C 
and N were calculated as the amount of C and N present in the unfumigated samples alone. The 
amount of 13C present in microbial biomass was determined by persulfate oxidation of the 1 M 
KCl extracts (diluted 20× with distilled water) using an Aurora 1030 W TOC analyzer (OI 
Analytical, College Station, TX, USA) and subsequent analysis on a PDZ Europa 20–20 isotope 
ratio mass spectrometer (Sercon Ltd., Cheshire, UK). C-13 analysis was carried out at the UC, 
Davis stable isotope facility. 

Total soil C and N were determined on oven dried and ground samples on a Leco CN-2000 
analyzer (Leco Instruments, Lansing, Michigan, US). Particulate organic matter greater than 53 μm 
(POM) was separated from total SOM using a density and size fractionation method [53, 54]. 
Briefly, 40 g of dry soil was shaken in a solution of sodium polytungstate (adjusted to a density of 
1.7 g cm−3). Lighter free organic material (fPOM) was decanted and filtered through a 53-μm 
mesh; heavier occluded organic material (oPOM) was shaken with sodium hexametaphosphate to 
break up aggregates and is then filtered and washed with deionized water through a 53-μm mesh. 

http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#MOESM1
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR50
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR51
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR52
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR53
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR54
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Dried and ground POM samples were analyzed for total C and N on a Leco CN-2000 analyzer as 
above. 

Data Analysis for Respiration, N Mineralization, Soil C and N Pools, Diversity, and qPCR 

Means and standard errors were calculated for all pool values, and throughout this manuscript we 
present mean values with standard error of the mean. We used two-way ANOVA by least squares 
to test for significant differences in pools of C and N, microbial diversity, SSU rRNA gene 
abundance, and isotopic recovery with a factorial model (including management by C addition 
interaction) to test for differences between levels of management and carbon treatment using 
PROC GLM in SAS (SAS institute, Cary, NC, USA).Total C respired, NO3 −, and NH4 + were 
analyzed using repeated measures ANOVA using PROC GLM in SAS with a factorial 
combination of management and substrate treatment as main effects (SAS institute). 

Results 

Initial Soil C and N Pools 

Soils from the organically (Org) and conventionally (Conv) managed fields differed initially in 
both soil organic C and N pools. On average, Org soils had greater amounts of total soil carbon 
than Conv soils (Table 1). However, soil management did not lead to different amounts of 
microbial biomass C, KCl extractable C, fPOM C, or oPOM C (Table 1). Prior to incubation, Org 
soils had greater amounts of total soil N than Conv soils (Table 1). However, other initial 
preincubation pools of N (microbial biomass N, KCl extractable N, KCl extractable NO3 − and 
NH4 +, fPOM N, and oPOM N) were not significantly different between management types 
(Table 1). Though there were no differences in the C/N of bulk soil or free POM, occluded POM 
C/N was 15 % lower in Org than Conv soils (16.3 ± 0.4 vs. 19.2 ± 0.5; p = 0.04). 

Microbial Community Structure and Abundance 

NMS analysis revealed that management type led to differences in bacterial community 
composition (Fig. 1a; PerMANOVA, p  < 0.05), but C substrate addition did not significantly alter 
community structure. Bacterial communities responded to pulsed C addition by becoming more 
similar along axis 2, although this trend was not significant (Fig. 1b). Management type led to 
significant differences between bacterial communities both with and without preincubation (T0) 
samples included in the analysis (Fig. 1a, b; PerMANOVA, p  < 0.05). Preincubation bacterial 
communities were significantly distinct from incubated samples (pulsed and control) within both 
Org and Conv managements (Fig. 1a; PerMANOVA, p < 0.05). 

http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Tab1
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Tab1
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Tab1
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Tab1
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Fig1
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Fig1
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Fig1
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Fig1


9 
 

 
Bacterial and fungal NMS ordination plots. The x- and y-axes represent the two axes that best summarize the 

community composition based on TRF relative abundance, and numbers in parentheses by the axes are the amount 
variation in community structure represented by the respective axis. a, b patterns of bacterial community TRFs and 

c, d patterns of fungal community TRFs. b, d Bacterial and fungal NMS run without the T0 sample in the analysis. In 
all panels, management significantly differentiated communities (PerMANOVA, p < 0.05), but carbon treatment did 

not. a, c T0 samples were also different from incubated samples within managements (PerMANOVA p < 0.05) 

Similar to bacteria, fungal communities also differed between Org and Conv soils (Fig. 1c; 
PerMANOVA, p < 0.05) but did not differ between pulsed C substrate addition and control. In 
addition to management type, fungi differed significantly by plot location suggesting greater 
spatial differences between individual fields than bacterial communities (Fig. 1c, d; 
PerMANOVA, p < 0.05). Management was also a significant driver of fungal community 
differences both with and without preincubation samples included in the analysis (Fig. 1c, d; 
PerMANOVA, p < 0.05). 
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Diversity of microbial communities differed with respect to management history, but not between 
pulsed C addition and control. In post incubation soils, Org soils had a higher bacterial TRF 
diversity based on relative abundance (H′ = 3.43 ± 0.012) than Conv soils (H′ = 3.32 ± 0.042, 
p = 0.02). Fungal communities did not differ in diversity between Conv (H′ = 3.64 ± 0.108) and 
Org soils (H′ = 3.74 ± 0.013). Neither bacterial nor fungal communities differed in diversity 
between pulsed C addition treatments when controlling for management types. 

Similar to NMS bacterial communities clustered by management (Fig. 2, y-axis dendrogram); 
however, two-way clustering identified 17 out of 55 bacterial TRFs (31 % of all TRFs) that were 
in high abundance only in the Org soils (Fig. 2, x-axis dendrogram). Another set of bacterial TRFs 
(24 of 66, 44 %) were ubiquitous and abundant across all samples. The remaining bacterial TRFs 
were less common and distributed across Org samples. 

 
Fig. 2 

Two way cluster analysis of bacterial community TRF relative abundance. Shading of cells indicates relative 
abundance of each TRF in each plot, management, and treatment with white indicating absence and darker colors 

indicating increasing relative abundance. TRFs that cluster closely on the x-axis dendrogram appear in similar 
abundance in similar samples, and samples that cluster closely on the y-axis dendrogram have similar compositions 

and abundances of TRFs 

Two-way cluster analysis also confirmed the NMS and PerMANOVA results that fungal 
communities clustered strongly by management type and by plot (Fig. 3, y-axis dendrogram). 
However, unlike bacterial communities, fungal TRF distribution did not reveal any distinct TRF 
groups that corresponded with particular managements or substrate addition treatments (Fig. 3, x-
axis dendrogram). Nearly half of the fungal TRFs (65/141) were abundant and ubiquitous across 
all managements and treatments (Fig. 3, x-axis dendrogram). The remainder showed patchy 
distribution with high abundance in individual fields suggesting that a large number of fungal taxa 
were unique to specific plots/fields irrespective of management type or carbon treatment. 

http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Fig3
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Fig3
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Fig3
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Fig. 3 

Two-way cluster analysis of fungal community TRFs. Shading of cells indicates relative abundance of each TRF in 
each plot, management, and treatment with white indicating absence and darker colors indicating increasing relative 
abundance. TRFs that cluster closely on the x-axis dendrogram appear in similar abundance in similar samples, and 
samples that cluster closely on the y-axis dendrogram have similar compositions and abundances of TRFs 

Similar to our chloroform fumigation–extraction biomass measurements, neither bacterial 16S nor 
fungal 18S rRNA gene copy abundance differed between management histories or C substrate 
treatments. However, preincubation soils had more bacterial 16S rRNA gene copies 
(1.3 × 109 ± 0.2 × 109 copies g dry soil−1) than post incubation soils (0.48 × 109 ± 0.07 × 109 copies 
g dry soil−1), and this difference was significant (ANOVA, p < 0.05). Fungal 18S rRNA gene copy 
abundance did not differ significantly between preincubation soils (20 × 106 ± 5.5 × 106 copies g 
dry soil−1) and post incubation (10 × 106 ± 3.9 × 106 copies g dry soil−1). 

Respiration and N Mineralization During Incubation 

We found no significant treatment effects on the processing of newly added 13C substrate and no 
significant effects on 13C fluxes (Table 3). There was no effect of management or substrate 
treatment on total C respired over the course of the incubation (Fig. 4). There was also no effect 
of substrate treatment or management type on the amount of dissolved C filtered from the soils in 
simulated rainfall events; values ranged from 11.1 ± 0.24 μg C flushed g soil−1 to 12.4 ± 0.51 μg C 
flushed g soil−1. There was no difference in total respired 13C substrate between soil management 
types. 

http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Tab3
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Fig4
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Fig. 4  

Cumulative soil respiration during incubation. Black symbols indicate organic and grey symbols conventional 
management; triangles are deionized water controls, circles are pulsed 13C glucose incubations 

Though management and substrate treatment did not have significant effects on total C respired, 
Org soils had twice as much N mineralized (virtually all NH4 + was nitrified) during the incubation 
as Conv (46 vs. 24 μg N g soil−1; Fig. 5, p < 0.001). In addition, over the course of the incubation 
C addition stimulated NO3 − production in Org relative to control (52 vs. 39 μg N g soil−1, p = 0.03), 
whereas C addition had no impact on NO3 − production in Conv soils (Fig. 5). The effect of 
substrate addition on mineralization in Org became more dramatic over the course of the 
incubation (Fig. 5). The amount of NH4 + produced by the soils during the incubation was several 
orders of magnitude lower than NO3 − without any significant differences between managements 
or carbon treatments (data not shown). 

 

http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Fig5
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Fig5
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Fig5
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Fig. 5  

Cumulative soil mineralization (only nitrate detectable). Black symbols indicate organic and grey symbols 
conventional management; triangles are deionized water controls, circles are pulsed 13C glucose incubations. 

Organically managed soils produced more NO3 − than conventional (p < 0.05), and organically managed soils with 
pulsed substrate addition mineralized more N than controls (p < 0.05) 

Post Incubation C and N Pools 

Post incubation, microbial biomass N did not differ between management histories or carbon 
addition treatments, though it was lower across all post incubation treatments compared to 
preincubation levels (Table 2). Following incubation, KCl extractable N was 34 % higher in 
organically managed soils than conventional soils. KCl extractable N in organically managed soils 
was also significantly higher with pulsed carbon addition relative to control (32 %, Table 2). These 
results were similar to those for KCl extractable NO3 −; NO3 − levels did not differ in 
conventionally managed soils as a function of carbon treatment, but NO3 − pools were 73 % greater 
in Org that received pulsed C addition relative to controls that did not receive C amendment 
(Table 2). In contrast, KCl extractable NH4 + concentrations were at least an order of magnitude 
lower in all samples than those of NO3 − and were highly variable (Table 2). 

Table 2  

Total soil C and N pools, post incubation 

  Total Soil C 
(%) 

Total Soil N 
(%) TEC TEN MBC MBN KCl 

NH3  
KCl 
NO3 −  

Control 

Conventional 0.95 (0.03) 0.09 (0.003) 19.6 
(0.67) 

11.5 
(1.8) 

445 
(24) 

10.5 
(2.1) 

0.75 
(0.35) 

2.4 
(0.13) 

http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Tab2
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Tab2
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Tab2
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Tab2
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  Total Soil C 
(%) 

Total Soil N 
(%) TEC TEN MBC MBN KCl 

NH3  
KCl 
NO3 −  

Organic 1.20 (0.04) 0.12 (0.006) 29.9 
(5.9) 

17.8 
(0.99) 

488 
(29) 

12.8 
(0.40) 

0.90 
(0.22) 

3.9 
(0.38) 

Pulsed C addition 

Conventional 0.82 (0.08) 0.08 (0.009) 19.9 
(1.7) 

12.6 
(1.7) 

487 
(27) 9.7 (2.4) 1.2 

(0.26) 
2.5 
(0.16) 

Organic 1.25 (0.04) 0.12 (0.010) 31.7 
(2.1) 

23.6 
(3.0) 

559 
(56) 

12.0 
(2.3) 

0.31 
(0.18) 6.8 (1.1) 

All analyses in units of μg C or μg N g−1 dry soil, except total soil C and N in % by dry soil mass. Values are means 
with standard errors in parentheses. Total soil C and N, TEC, TEN, and NO3 − differed between conventional and 
organic management (in italics, p < 0.05), and NO3 − also differed between control and pulsed C (p < 0.05). There were 
no significant interactions between management and C addition treatments for any variable. 

TEC or TEN = total 2 M KCl extractable C or N, MBC microbial biomass C, MBN microbial biomass N 

Soil C data indicated that there were shifts in pool sizes during the incubation, but these changes 
were unrelated to management or C substrate treatment. Neither total soil C nor microbial biomass 
C were affected by glucose addition or management (Table 2), but post incubation, Org soils had 
nearly double the KCl extractable C of conventional soils (Table 2, p  = 0.005). Microbial biomass 
C decreased significantly during the course of incubation. At the end of incubation the majority of 
the 13C substrate was retained in the bulk soil (between 34 % and 45 %, Table 3). 

Table 3  

C-13 budget 

  13C added (μg 13C/g soil) %13C Respired %13C MBC %13C Total Soil 

Conventional 5 28.4 (2.0) 10.6 (2.1) 41.5 (1.7) 

Organic 5 27.3 (2.7) 7.4 (.97) 44.8 (4.4) 

Total 2 M KCl extractable C was measured, but all values were below detection limit 

MBC microbial biomass C 

Discussion 

The goal of this project was to examine three hypotheses about the impact of agricultural 
management on soil microbial community composition and its interactions with C substrates and 
N mineralization. In agreement with our hypothesis, management produced distinct soil bacterial 
and fungal communities, and organically managed soils were more diverse in bacterial TRFs. 
Fungal communities did not differ between management types due to greater spatial variability. 
Also in agreement with our hypotheses, organically managed soil microbes mineralized more N 
than conventionally managed soil microbes, and N mineralization in organically managed soils 

http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Tab2
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Tab2
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Tab3
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increased in response to amendment with labile C. Although we expected less respiration from 
organically managed soils there was no difference between managements, but organically 
managed soils had larger C pools indicating more efficient respiration per unit soil C. 

Our finding that management history had a stronger impact than substrate addition on microbial 
community diversity and structure is consistent with other studies, which found that management 
had a long lasting legacy effect on microbial community structure [8, 11, 13, 14]. Bacteria in 
organically managed soils had a large number of TRFs (one-third of all TRFs) that were unique to 
that soil community, while all TRFs present in conventionally managed soils were shared with 
organically managed soils (Fig. 2). The increased diversity of plant inputs and its impacts on SOM 
could be expected to increase niche diversity in organically managed soils, and this provides one 
potential explanation of the difference in bacterial diversity between organic and conventional 
soils [10, 21, 55]. An alternate explanation for the decreased diversity of the microbial community 
in conventionally managed soils is that higher inputs of inorganic N in the form of fertilizer led to 
enrichment of microbial groups that were well suited to high mineral N environments at the 
expense of other groups. This process has been observed in forest soils [56, 57] and could be acting 
in concert with increased niche diversity in organically managed soil microbial communities to 
drive diversity differences. The variability of fungi between sample sites within management types 
(Fig. 1) agrees with other observations of uneven spatial distribution of soil fungi [58, 59]. 

Interestingly, we observed greater N mineralization in organically managed soils but no difference 
in microbial biomass (Fig. 5, Tables 1 and 2). Organic management practices have been shown 
previously to increase the rate of soil processes without causing increases in microbial biomass [8, 
10, 21, 24, 55, 60]. Other studies have also similarly shown that when exposed to small additions 
of carbon substrate the rate of microbial processes can increase without a change in standing 
biomass [24, 55]. These observations are consistent with the model proposed for the soil microbial 
loop, in which microbial growth is matched by increased predation allowing rates of respiration 
and mineralization to increase without changes in the standing stock of microbial biomass [61–
66]. Another potential explanation for increased N mineralization in organically managed soils is 
a change in the community composition of nitrifying organisms, since different groups of 
nitrifying bacteria display different nitrification kinetics [19, 20, 67–69]. 

Despite increased rates of N mineralization, we observed that organically managed soils still 
accumulated N and had a lower C/N, and these differences were most striking in the particulate 
OM pools (Table 1) [8, 28, 29, 70]. The accumulation of N under organic management has been 
linked to higher quality (lower C/N) and greater diversity of plant inputs. These differences then 
influence soil microbial communities and their ability to retain N [70–72]. 

The muted response of soil respiration to substrate addition (Fig. 5) was contrary to our predictions 
but not unreasonable since management differences have been accumulating differences in SOM 
and microbial communities for nearly 20 years, whereas our C additions were small and applied 
on much shorter time scale [8, 10]. Our carbon additions were deliberately small to better mimic 
root exudation rates and to avoid potential priming artifacts [23, 25, 73]. Small additions of 
substrate typically alter some process rates, but much larger additions would be required to shift 
microbial respiration against the background of long-term management differences [8, 59, 60, 74]. 

http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR8
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR11
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR13
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR14
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Fig2
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR10
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR21
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR55
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR56
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR57
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Fig1
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR58
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR59
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Fig5
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Tab1
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Tab2
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR8
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR10
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR21
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR24
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR55
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR60
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR24
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR55
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR61
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR66
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR19
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR20
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR67
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR69
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Tab1
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR8
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR28
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR29
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR70
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR70
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR72
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#Fig5
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR8
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR10
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR23
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR25
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR73
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR8
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR59
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR60
http://link.springer.com/article/10.1007/s00248-013-0225-0/fulltext.html#CR74
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In addition to long-term management differences between the soils, it is also possible that net total 
C respired in organically managed soils could have been reduced by increased nitrification both in 
control and with substrate added (Fig. 5). The higher amount of available SOM suggests that 
organically managed soils should have respired more C, especially with labile substrate added, but 
the increased nitrification by autotrophic nitrifiers could have decreased CO2 evolved from the soil 
surface (Fig. 5). Likely the thawing of frozen soils, which was designed to mimic the spring 
thawing which occurs in this climatic zone, led to the spike in microbial biomass C and bacterial 
16S rRNA gene copy number observed in the initial samples (Tables 1 and 2). The flush of organic 
material and increased biomass at soil thawing may have contributed to the muted response of soil 
respiration to substrate addition, i.e., the increased availability of substrate post thaw and the 
subsequent pool of dead microbial biomass likely overwhelmed the respiration signal of the 
smaller C addition. 

Despite the muted responses of respiration and the influence of thawing treatment, the substrate 
treatment and management differences in respired C and mineralized N suggest an interesting 
difference in the stoichiometric limitation of the total microbial community. Conventional soils 
respired a similar amount of C in total, but mineralized comparatively little N, which contrasts 
with organically managed soils that respired a similar amount with much more N mineralized 
(Figs. 4 and 5). This difference suggests the conventionally managed soil microbial community 
was more limited by N supply (compared to C), whereas the organic community was more N rich 
in both bulk and extractable N (Tables 1 and 2). These differences in N availability are further 
supported by the response to labile C addition. The response of conventional was small, but the N 
rich organic community accelerated N mineralization in response to C addition. This indicates that 
organically managed microbial communities had more tightly coupled connections between C 
availability and N mineralization. This tight connection between labile C and N mineralization in 
organically managed fields suggests that inorganic N supply in organically managed fields would 
be elevated in the rhizosphere (with high labile C availability). Increased N availability in the 
rhizosphere via this process might not be visible in situ due to rapid plant N uptake. 

In conclusion, our results suggest that organic management altered the diversity of the soil 
microbial community, and that these microbial differences led to new dynamics between the cycles 
of C and N. The microbial differences led to greater potential for N mineralization in response to 
short term C inputs but with long-term accumulation of N in the SOM of organically managed 
fields. These responses indicate adjustments to long-term agricultural management practices can 
take soil microbes and their associated biogeochemical processes into account, and these 
adjustment can lead to a microbial community that is more able to respond to plant root inputs of 
labile C and supply endogenous mineral N. Increased reliance on coupled C and N cycles could 
lead to agroecosystems more capable of relying on endogenous N supply with less need for 
fertilizer application. 
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