313 research outputs found

    Isotopic exchange of carbon-bound hydrogen over geologic timescales

    Get PDF
    The increasing popularity of compound-specific hydrogen isotope (D/H) analyses for investigating sedimentary organic matter raises numerous questions about the exchange of carbon-bound hydrogen over geologic timescales. Important questions include the rates of isotopic exchange, methods for diagnosing exchange in ancient samples, and the isotopic consequences of that exchange. This article provides a review of relevant literature data along with new data from several pilot studies to investigate such issues. Published experimental estimates of exchange rates between organic hydrogen and water indicate that at warm temperatures (50–100°C) exchange likely occurs on timescales of 10^4 to 10^8 yr. Incubation experiments using organic compounds and D-enriched water, combined with compound-specific D/H analyses, provide a new and highly sensitive method for measuring exchange at low temperatures. Comparison of δD values for isoprenoid and n-alkyl carbon skeletons in sedimentary organic matter provides no evidence for exchange in young (350 Ma) rocks. Specific rates of exchange are probably influenced by the nature and abundance of organic matter, pore-water chemistry, the presence of catalytic mineral surfaces, and perhaps even enzymatic activity. Estimates of equilibrium fractionation factors between organic H and water indicate that typical lipids will be depleted in D relative to water by ∼75 to 140‰ at equilibrium (30°C). Thus large differences in δD between organic molecules and water cannot be unambiguously interpreted as evidence against hydrogen exchange. A better approach may be to use changes in stereochemistry as a proxy for hydrogen exchange. For example, estimated rates of H exchange in pristane are similar to predicted rates for stereochemical inversion in steranes and hopanes. The isotopic consequences of this exchange remain in question. Incubations of cholestene with D_2O indicate that the number of D atoms incorporated during structural rearrangements can be far less than the number of C-H bonds that are broken. Sample calculations indicate that, for steranes in immature sediments, the D/H ratio imparted by biosynthesis may be largely preserved in spite of significant structural changes

    The Impact of Cosmic Variance on Inferences of Global Neutral Fraction Derived from Lyα\alpha Luminosity Functions During Reionization

    Full text link
    We investigate the impact of field-to-field variation, deriving from cosmic variance, in measured Lyman-α\alpha emitter (LAE) luminosity functions (LFs) and this variation's impact on inferences of the neutral fraction of the intergalactic medium (IGM) during reionization. We post-process a z=7 IGM simulation to populate the dark matter halos with LAEs. These LAEs have realistic UV magnitudes, Lyα\alpha fluxes, and Lyα\alpha line profiles. We calculate the attenuation of Lyα\alpha emission in universes with varying IGM neutral fraction, xˉHI\bar{\rm{x}}_{\rm{HI}}. In a xˉHI=0.3\bar{\rm{x}}_{\rm{HI}}=0.3 simulation, we perform 100 realizations of a mock 2 square degree survey with a redshift window Δz=0.5\Delta z = 0.5 and flux limit fLyα>1×1017ergss1cm2\rm{f}_{Ly\alpha}>1\times10^{-17}\:\rm{ergs}\:\: \rm{s}^{-1} \: \rm{cm}^{-2}; such a survey is typical in depth and volume of the largest LAE surveys conducted today. For each realization, we compute the LAE LF and use it to recover the input xˉHI\bar{\rm{x}}_{\rm{HI}}. Comparing the inferred values of xˉHI\bar{\rm{x}}_{\rm{HI}} across the ensemble of the surveys, we find that cosmic variance, deriving from large-scale structure and variation in the neutral gas along the sightline, imposes a floor in the uncertainty of ΔxˉHI0.2\Delta \bar{\rm{x}}_{\rm{HI}} \sim 0.2 when xˉHI\bar{\rm{x}}_{\rm{HI}} =0.3=0.3. We explore mitigation strategies to decrease this uncertainty, such as increasing the volume, decreasing the flux limit, or probing the volume with many independent fields. Increasing the area and/or depth of the survey does not mitigate the uncertainty, but composing a survey with many independent fields is effective. This finding highlights the best strategy for LAE surveys aiming at constraining xˉHI\bar{\rm{x}}_{\rm{HI}} of the universe during reionization.Comment: 17 pages, 13 figure

    Central Line-Associated Bloodstream Infection Risk Factors in a Pediatric Population

    Get PDF
    Background Central venous line (CVL) placement in children is often necessary for treatment and may be complicated by central line-associated bloodstream infection (CLABSI). We hypothesize that line type and clinical and demographic factors at line placement impact CLABSI rates. Methods This is a single-institution case-control study of pediatric patients (≤18 years old) admitted between January 1, 2015, and December 31, 2019. Case patients had a documented CLABSI. Control patients had a CVL placed during the study period and were matched by sex and age in a 2:1 ratio. Bivariate and multivariate logistic regression analysis was performed. Results We identified 78 patients with a CLABSI and 140 patients without a CLABSI. After controlling for pertinent covariates, patients undergoing tunneled or non-tunneled CVL had higher odds of CLABSI than those undergoing PICC (OR 2.51, CI 1.12-5.64 and OR 3.88, CI 1.06-14.20 respectively), and patients undergoing port placement had decreased odds of CLABSI compared to PICC (OR .05, CI 0.01-.51). There were lower odds of CLABSI when lines were placed for intravenous medications compared to those placed for solid tumor malignancy (OR .15, CI .03-.79). Race and age were not statistically significant risk factors. Discussion Central lines placed for medication administration compared to solid tumors, PICC compared to tunneled and non-tunneled central lines, and ports compared to PICC were associated with lower odds of CLABSI. Future improvement efforts should focus on PICC and port placement in appropriate patients to decrease CLABSI rates

    Low-Frequency Oscillations in Global Simulations of Black Hole Accretion

    Full text link
    We have identified the presence of large-scale, low-frequency dynamo cycles in a long-duration, global, magnetohydrodynamic (MHD) simulation of black hole accretion. Such cycles had been seen previously in local shearing box simulations, but we discuss their evolution over 1,500 inner disk orbits of a global pi/4 disk wedge spanning two orders of magnitude in radius and seven scale heights in elevation above/below the disk midplane. The observed cycles manifest themselves as oscillations in azimuthal magnetic field occupying a region that extends into a low-density corona several scale heights above the disk. The cycle frequencies are ten to twenty times lower than the local orbital frequency, making them potentially interesting sources of low-frequency variability when scaled to real astrophysical systems. Furthermore, power spectra derived from the full time series reveal that the cycles manifest themselves at discrete, narrow-band frequencies that often share power across broad radial ranges. We explore possible connections between these simulated cycles and observed low-frequency quasi-periodic oscillations (LFQPOs) in galactic black hole binary systems, finding that dynamo cycles have the appropriate frequencies and are located in a spatial region associated with X-ray emission in real systems. Derived observational proxies, however, fail to feature peaks with RMS amplitudes comparable to LFQPO observations, suggesting that further theoretical work and more sophisticated simulations will be required to form a complete theory of dynamo-driven LFQPOs. Nonetheless, this work clearly illustrates that global MHD dynamos exhibit quasi-periodic behavior on timescales much longer than those derived from test particle considerations.Comment: Version accepted to The Astrophysical Journal, 8 pages, 7 figure

    Teaching tobacco dependence treatment and counseling skills during medical school: rationale and design of the Medical Students helping patients Quit tobacco (MSQuit) group randomized controlled trial

    Get PDF
    INTRODUCTION: Physician-delivered tobacco treatment using the 5As is clinically recommended, yet its use has been limited. Lack of adequate training and confidence to provide tobacco treatment is cited as leading reasons for limited 5A use. Tobacco dependence treatment training while in medical school is recommended, but is minimally provided. The MSQuit trial (Medical Students helping patients Quit tobacco) aims to determine if a multi-modal and theoretically-guided tobacco educational intervention will improve tobacco dependence treatment skills (i.e. 5As) among medical students. METHODS/DESIGN: 10 U.S. medical schools were pair-matched and randomized in a group-randomized controlled trial to evaluate whether a multi-modal educational (MME) intervention compared to traditional education (TE) will improve observed tobacco treatment skills. MME is primarily composed of TE approaches (i.e. didactics) plus a 1st year web-based course and preceptor-facilitated training during a 3rd year clerkship rotation. The primary outcome measure is an objective score on an Objective Structured Clinical Examination (OSCE) tobacco-counseling smoking case among 3rd year medical students from schools who implemented the MME or TE. DISCUSSION: MSQuit is the first randomized to evaluate whether a tobacco treatment educational intervention implemented during medical school will improve medical students\u27 tobacco treatment skills. We hypothesize that the MME intervention will better prepare students in tobacco dependence treatment as measured by the OSCE. If a comprehensive tobacco treatment educational learning approach is effective, while also feasible and acceptable to implement, then medical schools may substantially influence skill development and use of the 5As among future physicians. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved

    Alterations in the epigenetic machinery associated with prostate cancer health disparities

    Get PDF
    DATA AVAILABILITY STATEMENT : Data used in this study were published by Jaratlerdsiri et al., 2022, and made accessible via the European Genome-Phenome Archive (EGA; https://ega-archive.org, accessed on 1 June 2022) under study accession EGAS00001006425 and dataset accession EGAD00001009067 (Southern African Prostate Cancer Study, SAPCS) and EGAD00001009066 (Garvan/St. Vincent’s Prostate Cancer Study).SUPPLEMENTARY MATERIALS : FIGURE S1: Optimal cluster number identification; FIGURE S2: Consensus heatmap for variant data overlapping epigenetic machinery genes based on results from ten multi-omics integrative clustering algorithms with the assigned cluster numbers of (A) k = 3 and (B) k = 8; FIGURE S3: Silhouette plot quantifying Sample Similarity based on results from ten multi-omics integrative clustering algorithms with the assigned cluster numbers of (A) k = 3 and (B) k = 8; FIGURE S4: Mutational burden in African- and European-derived tumors; FIGURE S5: Damaging variant mutational burden in African- and European-derived tumors; TABLE S1: Patient Summary or African and European Study participants; TABLE S2: SuperPaths and their associated pathways included in this Study for their relationship to epigenetic processes; TABLE S3: List of genes assigned to Epigenetic Process Group 1 (chromatin organization and regulation); TABLE S4: List of genes assigned to Epigenetic Process Group 2 (histone modifications); TABLE S5: List of genes assigned to Epigenetic Process Group 3 (DNA methylation); TABLE S6: List of genes assigned to Epigenetic Process Group 4 (RNA regulation); TABLE S7: List of genes assigned to Epigenetic Process Group 5 (epigenetic regulation of gene expression); TABLE S8: MOVICS clustering results; TABLE S9: Statistical Summary for tumor mutational burden (per Mb) based on all coding variants in epigenetic machinery genes in African- and European-derived tumors; TABLE S10: Statistical Summary for tumor mutational burden (per Mb) based only on damaging variants (as per functional impact prediction) in epigenetic machinery genes in African- and European-derived tumors; TABLE S11: Independent test of epigenetic cancer Subtype (ECS) and Small Somatic mutation to compare mutation frequency; TABLE S12: Independent test of epigenetic cancer Subtype (ECS) and Structural variation to compare Structural variation frequency; TABLE S13: Clinical Summary based on hierarchical clustering results, with epigenetic cancer Subtype (ECS) as the grouping variable; TABLE S14: Top features, posterior probability, and rank order for joint analysis of Small Somatic mutation, Somatic Structural variant, and Somatic copy number alteration data identified by iClusterBayes; TABLE S15: Clinical Summary based on hierarchical clustering results for Somatic copy number alteration data only, with epigenetic copy number cancer Subtype (EcnCS) as the grouping variable.African ancestry is a significant risk factor for aggressive prostate cancer (PCa), with southern African ethnicity conferring a nearly 3-fold increased global risk for associated mortality. It is well understood that epigenetic alterations drive PCa initiation and progression, coupled with somatic alterations in genes encoding epigenetic enzymes. However, differences in the somatic alterations in these genes in African- versus European-derived prostate tumors and how they may contribute to PCa health disparities has yet to be investigated, which forms the objective of this study. With current PCa care almost exclusively based on and tailored for men of European ancestry, the identification of African-specific novel PCa epigenetic cancer drivers (n = 18), including therapeutic potential (6/18), offers clinical significance with the possibility of improving healthcare approaches and health outcomes for men of African ancestry.Prostate cancer is driven by acquired genetic alterations, including those impacting the epigenetic machinery. With African ancestry as a significant risk factor for aggressive disease, we hypothesize that dysregulation among the roughly 656 epigenetic genes may contribute to prostate cancer health disparities. Investigating prostate tumor genomic data from 109 men of southern African and 56 men of European Australian ancestry, we found that African-derived tumors present with a longer tail of epigenetic driver gene candidates (72 versus 10). Biased towards African-specific drivers (63 versus 9 shared), many are novel to prostate cancer (18/63), including several putative therapeutic targets (CHD7, DPF3, POLR1B, SETD1B, UBTF, and VPS72). Through clustering of all variant types and copy number alterations, we describe two epigenetic PCa taxonomies capable of differentiating patients by ancestry and predicted clinical outcomes. We identified the top genes in African- and European-derived tumors representing a multifunctional “generic machinery”, the alteration of which may be instrumental in epigenetic dysregulation and prostate tumorigenesis. In conclusion, numerous somatic alterations in the epigenetic machinery drive prostate carcinogenesis, but African-derived tumors appear to achieve this state with greater diversity among such alterations. The greater novelty observed in African-derived tumors illustrates the significant clinical benefit to be derived from a much needed African-tailored approach to prostate cancer healthcare aimed at reducing prostate cancer health disparities.The US Congressionally Directed Medical Research Programs (CDMRP) Prostate Cancer Research Program (PCRP) Idea Development Award, the Health Equity Research Outcomes Integrity Consortium (HEROIC) Award, the National Health and Medical Research Council (NHMRC) of Australia Project Grant and Ideas Grants, a Cancer Association of South Africa (CANSA) Development Gran, the National Research Foundation of South Africa andthe Petre Foundation, Australia.https://www.mdpi.com/journal/cancershj2023School of Health Systems and Public Health (SHSPH

    Rapid analysis of 13C in plant-wax n-alkanes for reconstruction of terrestrial vegetation signals from aquatic sediments

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q10004, doi:10.1029/2004GC000772.Long-chain, odd-carbon-numbered C25 to C35 n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (<C25) are removed by evaporation on the moving wire. Test samples processed using this procedure yielded n-alkane fractions essentially free of interfering components. The δ13C values obtained by MW-irMS did not differ significantly from weighted averages of individual n-alkane δ13C values obtained by irmGC-MS. Isotopic variations in compound-class n-alkane fractions from a latitudinal transect of core-top sediments from the Southwest African margin (3°N–28°S) were congruent with those measured by compound-specific isotopic analyses of plant-wax n-alkanes. The amplitude of the variations was smaller, indicating contributions from non-plant-wax hydrocarbons, but the measurements revealed variations in carbon isotopic composition that are consistent with vegetation zones on the adjacent continent.We thank the WHOI Summer Student Fellow program and NSF (BCS-0218511) for funding

    Metagenomic analysis reveals a rich bacterial content in high‐risk prostate tumors from African men

    Get PDF
    BACKGROUND : Inflammation is a hallmark of prostate cancer (PCa), yet no pathogenic agent has been identified. Men from Africa are at increased risk for both aggressive prostate disease and infection. We hypothesize that pathogenic microbes may be contributing, at least in part, to high‐risk PCa presentation within Africa and in turn the observed ethnic disparity. METHODS : Here we reveal through metagenomic analysis of host‐derived wholegenome sequencing data, the microbial content within prostate tumor tissue from 22 men. What is unique about this study is that patients were separated by ethnicity, African vs European, and environments, Africa vs Australia. RESULTS : We identified 23 common bacterial genera between the African, Australian, and Chinese prostate tumor samples, while nonbacterial microbes were notably absent. While the most abundant genera across all samples included: Escherichia, Propionibacterium, and Pseudomonas, the core prostate tumor microbiota was enriched for Proteobacteria. We observed a significant increase in the richness of the bacterial communities within the African vs Australian samples (t = 4.6‐5.5; P = .0004‐.001), largely driven by eight predominant genera. Considering core human gut microbiota, African prostate tissue samples appear enriched for Escherichia and Acidovorax, with an abundance of Eubacterium associated with host tumor hypermutation. CONCLUSIONS : Our study provides suggestive evidence for the presence of a core, bacteria‐rich, prostate microbiome. While unable to exclude for fecal contamination, the observed increased bacterial content and richness within the African vs non‐ African samples, together with elevated tumor mutational burden, suggests the possibility that bacterially‐driven oncogenic transformation within the prostate microenvironment may be contributing to aggressive disease presentation in Africa.The Cancer Association of South Africa (CANSA) and National Research Foundation (NRF) of South Africa, as well as the Australian Prostate Cancer Research Center NSW (APCRC‐NSW) and St Vincent’s Prostate Cancer Center. VMH is supported by the University of Sydney Foundation and Petre Foundation, Australia and YF by the China Scholarship Council (#CSC201606325044)http://wileyonlinelibrary.com/journal/prosam2020School of Health Systems and Public Health (SHSPH
    corecore