22 research outputs found

    The Globular Cluster Systems in the Coma Ellipticals. III: The Unique Case of IC 4051

    Full text link
    Using archival \hst WFPC2 data, we derive the metallicity distribution, luminosity function, and spatial structure of the globular cluster system around IC 4051, a giant E galaxy on the outskirts of the Coma cluster core. The metallicity distribution derived from the (V-I) colors has a mean [Fe/H] = -0.3, a near-complete lack of metal-poor clusters, and only a small metallicity gradient with radius; it may, however, have two roughly equal metallicity subcomponents, centered at [Fe/H] ~ 0.0 and -1.0. The luminosity distribution (GCLF) has the Gaussian-like form observed in all other giant E galaxies, with a peak (turnover) at V = 27.8, consistent with a Coma distance of 100 Mpc. The radial profiles of both the GCS and the halo light show an unusually steep falloff which may indicate that the halo of this galaxy has been tidally truncated. Lastly, the specific frequency of the GCS is remarkably large: we find S_N = 11 +- 2, resembling the central cD-type galaxies even though IC 4051 is not a cD or brightest cluster elliptical. A formation model consistent with most of the observations would be that this galaxy was subjected to removal of a large fraction of its protogalactic gas shortly after its main phase of globular cluster formation, probably by its first passage through the Coma core. Since then, no significant additions due to accretions or mergers have taken place.Comment: 24 pp. plus 13 Figures. Postscript file for the complete paper can also be downloaded from http://www.physun.mcmaster.ca/~harris/WEHarris.html. Astron.J., in pres

    Multisite, multimodal neuroimaging of chronic urological pelvic pain: Methodology of the MAPP Research Network

    Get PDF
    The Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network is an ongoing multi-center collaborative research group established to conduct integrated studies in participants with urologic chronic pelvic pain syndrome (UCPPS). The goal of these investigations is to provide new insights into the etiology, natural history, clinical, demographic and behavioral characteristics, search for new and evaluate candidate biomarkers, systematically test for contributions of infectious agents to symptoms, and conduct animal studies to understand underlying mechanisms for UCPPS. Study participants were enrolled in a one-year observational study and evaluated through a multisite, collaborative neuroimaging study to evaluate the association between UCPPS and brain structure and function. 3D T1-weighted structural images, resting-state fMRI, and high angular resolution diffusion MRI were acquired in five participating MAPP Network sites using 8 separate MRI hardware and software configurations. We describe the neuroimaging methods and procedures used to scan participants, the challenges encountered in obtaining data from multiple sites with different equipment/software, and our efforts to minimize site-to-site variation

    Unique Microstructural Changes in the Brain Associated with Urological Chronic Pelvic Pain Syndrome (UCPPS) Revealed by Diffusion Tensor MRI, Super-Resolution Track Density Imaging, and Statistical Parameter Mapping: A MAPP Network Neuroimaging Study.

    No full text
    Studies have suggested chronic pain syndromes are associated with neural reorganization in specific regions associated with perception, processing, and integration of pain. Urological chronic pelvic pain syndrome (UCPPS) represents a collection of pain syndromes characterized by pelvic pain, namely Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) and Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS), that are both poorly understood in their pathophysiology, and treated ineffectively. We hypothesized patients with UCPPS may have microstructural differences in the brain compared with healthy control subjects (HCs), as well as patients with irritable bowel syndrome (IBS), a common gastrointestinal pain disorder. In the current study we performed population-based voxel-wise DTI and super-resolution track density imaging (TDI) in a large, two-center sample of phenotyped patients from the multicenter cohort with UCPPS (N = 45), IBS (N = 39), and HCs (N = 56) as part of the MAPP Research Network. Compared with HCs, UCPPS patients had lower fractional anisotropy (FA), lower generalized anisotropy (GA), lower track density, and higher mean diffusivity (MD) in brain regions commonly associated with perception and integration of pain information. Results also showed significant differences in specific anatomical regions in UCPPS patients when compared with IBS patients, consistent with microstructural alterations specific to UCPPS. While IBS patients showed clear sex related differences in FA, MD, GA, and track density consistent with previous reports, few such differences were observed in UCPPS patients. Heat maps illustrating the correlation between specific regions of interest and various pain and urinary symptom scores showed clustering of significant associations along the cortico-basal ganglia-thalamic-cortical loop associated with pain integration, modulation, and perception. Together, results suggest patients with UCPPS have extensive microstructural differences within the brain, many specific to syndrome UCPPS versus IBS, that appear to be localized to regions associated with perception and integration of sensory information and pain modulation, and seem to be a consequence of longstanding pain

    Anatomical localization of significant differences in DTI and TDI measurements between UCPPS patients (<i>N = 45</i>) and HCs (<i>N = 56</i>).

    No full text
    <p>A) Observed differences in mean diffusivity (MD). B) Observed differences in fractional anisotropy (FA). C) Observed differences in fiber track density. D) Observed differences in generalized anisotropy (GA). Significant clusters were determined by thresholding based on level of statistical significance (<i>P < 0</i>.<i>05</i>) and cluster-based corrections using random permutation analysis. Left column illustrates differences projected onto representative white matter fiber tracts.</p
    corecore