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The Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network is an ongoing
multi-center collaborative research group established to conduct integrated studies in participants with urologic
chronic pelvic pain syndrome (UCPPS). The goal of these investigations is to provide new insights into the etiol-
ogy, natural history, clinical, demographic and behavioral characteristics, search for new and evaluate candidate
biomarkers, systematically test for contributions of infectious agents to symptoms, and conduct animal studies to
understand underlying mechanisms for UCPPS. Study participants were enrolled in a one-year observational
study and evaluated through a multisite, collaborative neuroimaging study to evaluate the association between
UCPPS and brain structure and function. 3D T1-weighted structural images, resting-state fMRI, and high angular
resolution diffusionMRI were acquired in five participating MAPP Network sites using 8 separate MRI hardware
and software configurations. We describe the neuroimaging methods and procedures used to scan participants,
the challenges encountered in obtaining data from multiple sites with different equipment/software, and our
efforts to minimize site-to-site variation.

Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The Multidisciplinary Approach to the Study of Chronic Pelvic Pain
(MAPP) Research Network was established by the National Institute
of Diabetes and Digestive and Kidney Diseases in 2008 to conduct
tp://creativecommons.org/licenses/by/4.0/).
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Table 1
Summary of patient cohorts.

Research group NW UCLA Michigan Stanford UAB Total

Healthy control 25 35 37 19 12 128
Positive control 10 32 17 10 0 69

Fibromyalgia x x x x
IBS x x x x
CFS x x

UCPPS 24 33 34 24 17 132
Total 59 100 88 53 29 329
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collaborative and integrated studies in men and women with urologic
chronic pelvic pain syndrome (UCPPS), a term which includes intersti-
tial cystitis/bladder pain syndrome (IC/BPS) and chronic prostatitis/
chronic pelvic pain syndrome (CP/CPPS) (Clemens et al., 2014; Landis
et al., 2014). The Network's goals are to identify clinically relevant
phenotypes for these syndromes, their underlying pathophysiology,
describe the treated natural history; and identify biologic, genetic, and
behavioral risk factors for UCPPS. A subgroup of study participants en-
rolled in a one-year prospective observational study, the trans-MAPP
Epidemiology and Phenotyping Study, had their brain structure and
function evaluated with advanced neuroimaging techniques. Healthy
controls and persons with irritable bowel syndrome, chronic fatigue
syndrome and fibromyalgia (“positive controls”) were also studied.

The MAPP Neuroimaging Study utilized three magnetic resonance
imaging (MRI) technologies, each aimed at providing unique informa-
tion regarding brain structure or function. Structural brain imaging
was performed using 3D T1-weighted imaging to provide high contrast
between various tissue types (e.g. gray matter (GM) and white matter
(WM)) to evaluate associations between brain morphometry and a
wide array of characteristics of these syndromes. The associations be-
tween brain network communications and UCPPS was investigated
with resting-state functional MRI using time resolved multislice T2*-
weighted echo planar imaging (EPI). Diffusion tensor imaging (DTI)
was also performed with multi-slice diffusion-weighted spin echo EPI
to assess the relationship between WM microstructural alterations
associated with UCPPS. We hypothesize that when combined with
simultaneously acquired clinical, behavioral, and biological data, obtain-
ed through the trans-MAPP EP Study, these three advanced structural
and functional neuroimaging techniques performed on a large number
of participants from five different network sites will not only inform
about the pathophysiology of UCPPS, but may also help to identify clin-
ical useful imaging biomarkers and distinct phenotypic profiles associ-
ated with UCPPS. It is expected that these findings will inform both
clinical management and future clinical trials.

We describe the specific neuroimaging methodologies used in our
multi-site study and provide summaries of quality assurance, quality
control, and image processing procedures that were used to assess the
MAPP Network neuroimaging data.

2. Subjects and methods

The MAPP Network Neuroimaging Study involved a total of five dif-
ferent institutions with various hardware and software configurations.
Pulse sequence parameters were standardized across sites to the extent
permitted by each platform.Neuroimaging procedureswere documented
and distributed to participating centers to provide themwith targeted pa-
rameters and methods for image acquisition (manual of procedures is
available at http://painrepository.org/documents/transmapp/manuals/
TransMAPP_MRIProceduresManual_20110224.pdf). Neuroimaging was
performed at the medical center campuses of Northwestern University
(NW), Stanford University (Stanford), University of Alabama at Birming-
ham (UAB), University of California — Los Angeles (UCLA), and the Uni-
versity of Michigan (Michigan). All centers used 3 T high-performance
MR scanners for image acquisition from one of three manufacturers:
Siemens Healthcare (Siemens), GE Medical Systems (GEMS), or Philips
Healthcare (Philips). Specific MRI system details and software configura-
tions are shown in Tables 2–4. Note that several centers underwent soft-
ware upgrades over the course of the study and several sites with similar
scanners had slightly different software configurations.

2.1. Overview of trans-MAPP EP Study participants

The organization of the MAPP Research Network and the design of
the trans-MAPP Epidemiology and Phenotyping Study have been de-
scribed in detail previously (Landis et al., 2014; Clemens et al., 2014).
A total of 329 of 1039 participants enrolled in the study received a
scan at baseline. They included 132 persons with UCPPS, 128 healthy
controls, 69 sex and age-matched “positive” controls including partici-
pants with irritable bowel syndrome (IBS) and fibromyalgia (Table 1).
All MRI scans from the 6 discovery sites included 3D T1-weighted struc-
tural and resting state functional MRI (rs-fMRI) sequences. Additionally
five sites acquired diffusion tensor imaging (DTI) MRI.
2.2. 3D T1-weighted structural MRI

Amagnetization prepared rapid gradient echo (MP-RAGE) pulse se-
quence was used for high-resolution, 3D T1-weighted structural MRI in
Siemens and Philips scanners, while an inversion-recovery fast spoiled
gradient echo (IR-FSPGR) sequencewas used for 3D T1-weighted struc-
tural MRI on GEMS scanners at one site. This pulse sequence has been
standardized across manufacturers and software platforms as part of
the Alzheimer's Disease Neuroimaging Initiative (ADNI) (Jack et al.,
2004), which used theMP-RAGE and IR-FSPGR sequences as the prima-
ry structural imaging method. MP-RAGE/IR-FSPGR sequences provide
excellent tissue contrast at nearly isotropic spatial resolution around
1 mm3. Table 2 illustrates the particular pulse sequence timing and
acquisition parameters used at each site. It is important to note that
GEMS platforms do not have the particular MP-RAGE pulse sequence
available, therefore, the comparable IR-FSPGR sequence was used,
which has a different definition for certain pulse sequence parameters
including repetition time (TR).
2.3. Resting-state fMRI

Resting-state fMRI (rs-fMRI) acquisition parameters followed rec-
ommendations from the functional bioinformatics research network
(fBIRN) (Glover et al., 2012), and are described in Table 3. Briefly, our
rs-fMRI acquisition protocol used a target run length of 10 min to
enhance for filtering of low frequency fluctuations from raw temporal
data.
2.4. Diffusion tensor imaging

Diffusion tensor images (DTI) were acquired at four of the partic-
ipating centers. Our DTI protocol included diffusion-weighted image
acquisition in at least 32 diffusion sensitizing directions (ideally N60
directions) and a maximum b-value of 1000 s/mm2 to enable prob-
abilistic tractography and other sophisticated post-processing tech-
niques that require relatively high angular resolution diffusion
imaging. Hardware and software differences across MRI systems
made homogeneous acquisition of DTI data challenging, particularly at
centers without the ability to modify the diffusion direction information
directly. These differences were due to inherent differences in diffusion
timing relating to gradient performance, maximum b-values limited by
gradient strength, and the ability to prescribe particular diffusion-
sensitizing directions. Despite these efforts, variability in acquisition pa-
rameters across participating sites was inherent in the DTI data. Table 4
lists the DTI pulse sequence timing and acquisition parameters used at
each site.
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Table 2
3D structural MRI acquisition parameters. (Note: There are slight differences between sequence parameters defined for Siemens and GEMS or Philips, including definition of TR and the
required flip angle for similar CNR).

Institution name NW UCLA Michigan Stanford UAB

Scanner manufacturer Siemens Siemens Philips GEMS Philips
Scanner model Trio Tim Trio Tim Ingenia Discovery MR750 Achieva
Software version B17 B15 4.1.1–4.1.2 DV22.0 2.6.3
Field strength (T) 3 3 3 3 3
Acquisition type 3D 3D 3D 3D 3D
Image orientation Axial obl Axial obl Axial obl Axial obl Axial obl
Flip angle [degrees] 9 9 8 11 9
Repetition time (TR) [ms] 2200 2200 6.6–7.1 6.8–7.4 7.1–7.2
Echo time (TE) [ms] 3.3 3.3 4.7 2.8 3.2–4.7
Inversion time (TI) [ms] 900 900 790–850 450 835–844
Number of averages (NEX) 2 2 1 2 1
Pixel bandwidth [Hz] 241 200 246–247 391 241
Field of view (FOV) [mm] 256 256 256 220 256
Acquisition matrix 256 × 256 256 × 256 288 × 288 256 × 256 288 × 288
Slice thickness 1 (0) 1 (0) 0.9 (0) 1 (0) 1 (0)
Voxel resolution [mm] 1 × 1 × 1 1 × 1 × 1 0.9 × 0.9 × 0.9 0.86 × 0.86 × 1 1 × 1 × 1
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2.5. Image upload/download

DICOM formatted image data were uploaded from each participating
site to the Image Data Archive operated by the University of Southern
California (USC) Laboratory of NeuroImaging (LONI) (http://ida.loni.usc.
edu). In addition to providing archive services, LONI also provides format
conversion services to permit Network investigators to download images
in NIFTI or DICOM format.
2.6. Quality assurance and quality control

Each participating MAPP Network imaging site collected a series of
phantom images to ensure adequate image quality. Structural MR
images of the ADNI phantom were collected at each center using pre-
prescribed image acquisition and pulse sequence settings (see MAPP
neuroimaging procedures manual http://painrepository.org/documents/
transmapp/manuals/TransMAPP_MRIProceduresManual_20110224.pdf).
In certain circumstances, sites were allowed to submit equivalent phan-
tom data (e.g. the American College of Radiology (ACR) standardized
phantom). The ADNI phantom object images were visually inspected to
identify gross geometric distortions in structural MR data. The sites
were also required to obtain and perform a series of rs-fMRI studies on
the fBIRN phantom to ensure temporal stability of the sequence
(Friedman and Glover, 2006a,b). Sites collected rs-fMRI data on the
fBIRN phantom on the same day as participants for the first 10 scans or
until temporal stability was confirmed. Quality assurance of phantom
data compared static spatial noise variance (SNR), signal drift and fluctu-
ation, and Fourier analysis of residuals. Metrics from each site complied
Table 3
Resting-state fMRI acquisition parameters.

Institution name NW UCLA

Scanner manufacturer Siemens Siemens
Scanner model Trio Tim Trio Tim
Software version B17 B15
Field strength (T) 3 3
Acquisition type 2D EPI 2D EPI
Image orientation Axial obl Axial obl
Flip angle [degrees] 77 77
Repetition time (TR) [ms] 2000 2000
Echo time (TE) [ms] 29 28
Number of repetitions [frames] 10,800 12,000
Pixel bandwidth [Hz] 2003 3005
Field of view (FOV) [mm] 220 220
Acquisition matrix 64 × 64 64 × 64
Slice thickness (gap) [mm] 4 (0.5) 4 (0.5)
Voxel resolution [mm] 3.44 × 3.44 × 4 3.44 × 3.44 × 4
with defined ranges and recommendations (Glover et al., 2012). Quality
control procedures for DTI human data evaluated ranges of apparent
diffusion coefficient (ADC) and fractional anisotropy (FA) for various
reference structures (e.g. cerebrospinal fluid and normal white matter),
examining color-coded FA maps for adequate tensor directionality, as-
sessment of bulk motion artifacts, and assessment of susceptibility-
related geometric distortions. In particular ADC values in WM and ven-
tricular cerebrospinal fluid were required to be within a range of 0.5–
0.8 μm2/ms and 2.5–3.5 μm2/ms, respectively, while FA values in the
corpus callosum and cerebrospinal fluid were required to be within a
range of 0.6–1.0 and 0.0–0.2, respectively.

EachMRI data acquisition uploaded to the LONI repository underwent
a quality control evaluation that was not designed to reject studies, but
rather flag acquisition errors and other technical problems so that inves-
tigatorswhomight use these data in the futurewouldhave annotated im-
ages. Structural MRI data were assessed visually for subject motion
artifacts, poor image contrast, and errors in image prescription. Rs-fMRI
data were examined formotion using the fBIRN quality control workflow
(BXH/XCEDE tools),whichproduces a full report including SNRand signal
fluctuation to noise ratio (SFNR) along with metrics of global head mo-
tion, signal drift, and spurious fluctuations. DTI data were flagged for var-
iations in quantitative metrics (e.g. ADC and FA), motion artifacts,
gradient failures, and geometric distortions.

2.7. Selection of subgroups for center comparisons

Data from the MAPP Network were used to describe MR measure-
ment variations across centers. All healthy control females aged 20–35
provided a data set consisting of 47 different subjects (6 from NW, 11
Michigan Stanford UAB

Philips GEMS Philips
Ingenia Discovery MR750 Achieva
4.1.1–4.1.2 DV22.0 2.6.3
3 3 3
2D EPI 2D EPI 2D EPI
Axial obl Axial obl Axial obl
77 77 77
2000 2000 2000
30 30 30
9000–14,000 9600 9600
2000–2200 7813 3050
220 220 220
64 × 64 64 × 64 64 × 64
4 (0.5) 4 (0.5) 4 (0.5)
3.44 × 3.44 × 4 3.44 × 3.44 × 4 3.44 × 3.44 × 4
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Table 4
Diffusion tensor imaging acquisition protocol.

Institution name NW UCLA 1 UCLA 2 Michigan Stanford 1 Stanford 2 UAB

Scanner manufacturer Siemens Siemens Siemens – GEMS GEMS Philips
Scanner model Trio Tim Trio Tim Trio Tim – Discovery MR750 Discovery MR750 Achieva
Software version B17 B15 B15 – DV22.0 DV22.0 2.6.3
Field strength (T) 3 3 3 – 3 3 3
Acquisition type 2D EPI 2D EPI 2D EPI – 2D EPI 2D EPI 2D EPI
Image orientation Axial obl Axial obl Axial obl – Axial obl Axial obl Axial obl
Flip angle [degrees] 90 90 90 – 90 90
Repetition time (TR) [ms] 9500 9400 9500 – 9600 9000 14,527–14,686
Echo time (TE) [ms] 88 87 88 – 93–94 76–90 75–76
b-Values [# acq] [s/mm2] 0/1000 (8/60) 0/1000 (1/64) 0/1000 (8/61) 0/1000 (10/64) 0/1000 (8/60) 0/1000 (1/33)
Number of directions (b N 0) 60 64 61 – 64 60 33
Pixel bandwidth [Hz] 1347 1630–1700 1630–1700 – 1953 1953–3906 1784–1786
Field of view (FOV) [mm] 256 256 256 – 220 256 220
Acquisition matrix 128 × 128 128 × 128 128 × 128 – 128 × 128 128 × 128 128 × 128
Slice thickness (gap) [mm] 2 (0) 2 (0) 2 (0) – 4 (0.5) 2 (0) 2 (0)
Voxel resolution [mm] 2 × 2 × 2 2 × 2 × 2 2 × 2 × 2 – 1.6 × 1.6 × 4 2 × 2 × 2 1.6 × 1.6 × 2
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from UCLA, 14 fromMichigan, 6 from UAB, 10 from Stanford) for struc-
tural MRI and rs-fMRI datasets. A subset of 27 healthy control females
(5 from NW, 5 from UCLA, 5 from UAB, 12 from Stanford) was used
for DTI analysis. Additionally, an rs-fMRI analysis was performed using
all healthy control, UCPPS, and positive control participants' neuroimag-
ing data acquired by January 2013 with a total of 263 participants (52
from NW, 85 from UCLA, 60 from Michigan, 41 from Stanford, 25 from
UAB), and a DTI analysis utilized all healthy controls that underwent
DTI scanning with a total 94 subjects (28 from NW, 31 from UCLA, 26
from Stanford, and 12 from UAB).
2.8. Image processing and statistical analyses

2.8.1. Structural MRI
Structural MRI data obtained from the normal control female

20–35 years of age cohort underwent N3 intensity normalization,
brain extraction using the Brain Extraction Tool (BET), and a 4 compo-
nent (background, cerebrospinal fluid, GM, andWM) fuzzy c-means tis-
sue segmentation using MIPAV software with default parameter
settings. Failures in segmentation were identified by visual inspection.
Custom software to measure whole brain GM and WM volumes from
each study were implemented in Interactive Data Language (IDL). A
Kuskal–Wallis test was used to identify statistically significant differ-
ences in whole brain WM and GM volumes across centers.

In addition to this subset, MAPP Network neuroscan data from 293
participants across all sites were evaluated independently using a
custom-designed quality control pipeline that checks headers, extracts
skull, and registers it to standard space. Across-center differences in
brain tissue volume (normalized for subject head size) were further
identified with Structural Image Evaluation using Normalization of
Atrophy Cross-Sectional (SIENAX) derived estimates of peripheral GM
(pgray) (Smith et al., 2002). We sought to define a single algorithm
that could be used to statistically adjust for site differences in brain
structural data (including DTI, see below) that accounted for within-
and between-site variability. The linear correction that resolved
between-center differences in mean and variability was identified for
each subject as follows:

cf ¼ xn–xcð Þ þ xtot

where cf is an individual's correction factor, xn is subject's uncorrected
pgray value, xc is mean pgray value of subject's site, and xtot is grand
mean pgray across all sites. This correction adjusts for individual site
effect and adds this corrected value to the grand mean of all sites.
2.8.2. rs-fMRI
Quality control evaluations were performed on the rs-fMRI data

using fBIRN software tools and the normal control female 20–35 years
of age data as described by Friedman et al. (Friedman and Glover,
2006a,b). Additionally, data from 293 healthy volunteers, UCPPS, and
positive control participants were preprocessed using FSL's FMRI Expert
Analysis Tool (FEAT) version 5.98, including skull extraction, slice-
timing correction, head motion correction, spatial smoothing (with a
Gaussian kernel of full-width-half-maximum 5 mm), and a high-pass
(150 s) temporal filter. Independent components analysis (ICA) imple-
mented with the MELODIC tool in FSL, and time courses of cerebral
spinal fluid and WM single-voxel regions of interest (ROIs) were
regressed out of the BOLD signal, aswell as the globalmean BOLD signal.
Voxel-wise functional correlation matrices were generated using pair-
wise Pearson correlations, corrected for distance between regions, and
thresholded over a range of connection strengths. These connection
strengths, or link densities, represent the percentage of connections in
a correlation matrix that exceed given correlation thresholds that are
consistent with small-world topology (detailed methods in Baria et al.,
2013). Using a connection density of 0.1, a mean map of voxel-wise
degree across all subjects to test for center, age, and gender effects
was generated (corrected for positive false discovery rate, pFDR).
Given the absence of standards for across-site compatibility of rs-fMRI
data, we compared default mode network properties, which have
been extensively studied in healthy populations and in persons with
pain, to estimate similarity of information flow across participant
groups and sites (corrected for pFDR).
2.8.3. DTI
DTI data from the entire healthy control cohort (94 subjects) were

first eddy current and distortion corrected using FSL's Diffusion Toolbox
(http:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT) using the initial b = 0 s/mm2

volume as the reference. ADC and FA images were calculated using the
MRtrix software package (http://www.brain.org.au/software/mrtrix).
Only diffusion datawith ADC and FAmaps that passed quality assurance
were included in this analysis. FA images for each participant were reg-
istered to the JohnsHopkinsUniversityDTI atlas (ICBM-DTI-81 1mmFA
atlas) using a 12-degree of freedom linear affine transformation in FSL.
After linear registration, elastic (nonlinear) registration was performed
between individual FA maps and the ICBM-DTI-8 1 mm FA atlas using
the FNIRT command in FSL. The transformation matrices (linear, then
nonlinear) were then used to align ADC maps to the same atlas space.
WM voxels were defined using an FA threshold of 0.3 and above. Deep
gray matter structures were also included in the mask for analysis.
Statistical parameter mapping was performed using a general linear
model in AFNI to identify spatially-specific differences in WM FA and

http://www.brain.org.au/software/mrtrix
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ADC across sites. Age and gender informationwere used as covariates in
the GLM. Statistical significancewas defined as P b 0.05 using a false dis-
covery rate q b 0.05 and a minimum cluster size of 250 μL. In addition,
mean values from spherical regions of interest (ROIs) (4 mm radius)
placed on the corpus callosum (CC) and aWMregion in the superior co-
rona radiata were measured. A one-way ANOVA test was performed
with Tukey's test for multiple comparisons to examine differences in
ROI-based FA and ADC measurements across centers. For subset analy-
ses in the normal control female 20–35 years of age,meanADC, FA, axial
diffusivity (AD, defined as the diffusivity along the principal eigenvector
orientation) and radial diffusivity (RD, defined as the diffusivity perpen-
dicular to the principal eigenvector orientation) were calculated in IDL
and evaluated across various ROIs.

Given the possibility that selected ROIs contained a combination of
WM and GM, we then calculated the mean skeletal FA for each subject
using a commonWM skeleton template derived from pooled participant
groups. Mean FA values for each center were contrasted using permuta-
tion methods (n = 5000 permutations, P b 0.05). A one-way ANOVA
was used to comparemean FA values across centers. The linear correction
method outlined for structural 3D data was also used for DTI data.
Fig. 1. Structural and fMRI phantom results. A) Center slice from axial 3D T1-weighted (MPRAG
slices from (A) upscaled 100-fold to permit visualization of background noise and artifacts. C
D) Equivalent slices from (C) upscaled 100-fold to highlight background noise and artifacts.
3. Results

3.1. Phantom assessment

Fig. 1 provides example images of the phantom objects used at the
participating MAPP Network sites. As illustrated by this figure, the MRI
MR systems at each site used slightly different procedures for digitally
representing MR signal intensity and noise characteristics. All systems
used 16-bit digital image representation, however, absolute values
and digital resolution appeared to differ across centers. The Siemens
systems (NWandUCLA) producedDICOM images of the ADNI phantom
objects that represented signal intensity as unsigned 16 bit integers
using the range 0–2000 (11 bits). ADNI phantom object images collect-
ed using Philips systems represented images as 16 bit integers using a
range of 0–850 (10 bits). GEMS systems recorded signal intensity as
signed integers using a range of 0–24,000 (15 bits). In addition to this
difference in digital representation, Philips and GEMS MRI systems
used a symmetric Fermi k-space filter during image reconstruction
that removed much of the background noise (Fig. 1B). The differences
in digital scaling and reconstruction filtering are likely responsible for
E or IR-FSPGR) images from ADNI (or ACR) phantom (intensity autoscaled). B) Equivalent
) Representative resting-state fMRI images of the fBIRN phantom (intensity autoscaled).
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differences in contrast and background noise apparent in Fig. 1A–B). Be-
cause thesefiltering and post-processing steps for the raw-data are pro-
prietary and vendor-specific, we opted to use the default settings at
each scanner. While the variation in filtering techniques may decrease
compatibility across scans, the presence of filtering in structural MRI is
ubiquitous and individual configuration of filtering for maximum com-
patibility would have proven cumbersome. Thus, visual assessment of
scan quality and reliable reconstruction and filtering on a site-by-site
basis was preferred.
Fig. 2. 3D structural T1-weighted MR results. A) Representative 3D structural T1-weighted
autoscaled). B) Peripheral GM volume (in cc) in healthy control subjects across the variou
compared with the other sites. C) Comparison of GM volume (in cc) between male and fem
decrease linearly with age (green = Michigan; red = NW; dark blue = UCLA; light blue
correlation as demonstrated by higher R2 (green = Michigan; red = NW; dark blue = UCLA;
for each subject in the group of healthy control females age 20–35 stratified by site. Kruskal–W
GM volume but not for WM volume or the sum of WM and GM volume. (Note the difference i
(GM+ WM). Blue = GM volume. Green = WM volume. G) Ratio of WM to GM signal inten
Kruskal–Wallis tests suggest a significant difference between sites with respect to GM to WM
mean and vertical lines indicate one standard deviation above and below the mean.
Examination of the rs-fMRI data collected using the fBIRN phantom
showed many of the same features as the structural MRI data, namely
differences due to reconstruction filtering and digital resolution. Image
uniformity was relatively consistent across centers, with one site illus-
trating slight variations in image intensity across the phantom (Fig.
1C). Similar to structural MR data, background noise was less apparent
in data acquired using Philips MR systems compared with the Siemens
systems. Interestingly, background noise was completely absent on
GEMS systems, likely due to subsequent image filtering during post-
MR images of human subjects from each site at the level of the basal ganglia (intensity
s sites, demonstrating a significantly lower GM volume at the University of Michigan
ale healthy controls showing no significant difference. D) GM volume (in cc) appears to
= Stanford; yellow = UAB). E) GM volume after correcting for site shows improved
light blue = Stanford; yellow = UAB). F) Whole brain GM and WM volumes measured
allis H-test indicated a significant between site difference (H = 11.078, P = 0.0257) for

s reduced substantially after exclusion of data from Michigan). Red = Total brain volume
sity (contrast) for each subject in the group of healthy control females separated by site.

contrast (H = 16.071, P = 0.0029). For (F) and (G), horizontal lines reflect the group
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processing (Fig. 1D). Background noise in the UCLA data appeared
slightly higher than data acquired from NW. Furthermore, the N/2
aliasing artifacts present in theUCLA andNUdata appear to differ slight-
ly, with NW images illustrating horizontal streaking artifacts not pres-
ent in UCLA data. These observations illustrate the slight differences in
image quality across sites despite similar acquisition parameters and
identical phantom objects.

3.2. Structural MRI

Consistent with phantom assessments, slight variations in image
intensity were present in structural MRI scans across the various sites
(Fig. 2A). Differences in peripheral GM volume were noted across
sites, gender, and age. Results show that peripheral GMvolumedepends
significantly on site (Fig. 2B; ANOVA, P b 0.001), with the University of
Michigan showing a systematically lower volume compared with
other sites. No differences in peripheral GM volume were found when
comparing 293 male and female participants in this study (Fig. 2C;
ANOVA, P = 0.59). An expected negative correlation was observed
between peripheral GM volume and the age of the healthy controls
(Fig. 2D; R = −0.41, P b 0.001). This relationship was strengthened
when correcting for both site and gender (Fig. 2E; R = −0.51,
P b 0.001). On average, peripheral GM volume decreased by 2 cm3 for
each one year increase in age. Similar trends in brain volumes were ob-
served in the analysis of a subset of healthy female controls between
ages 20–35 years (Fig. 2F). In particular, no differences in WM volume
or the sum of WM and GM volume were observed in this subset of
healthy controls (Fig. 2F; Kruskal–Wallis, P N 0.05); however, there
was a significant difference in GM volumes across sites (Kruskal–Wallis,
P=0.026). Lastly, quantitative estimates of tissue contrast betweenGM
and WM were examined across centers in a subset of healthy controls
(Fig. 2G). Results suggest a significant difference in the ratio of white to
gray matter signal intensity across various centers (Fig. 2G; Kruskal–
Wallis, P= 0.003).

3.3. Resting-state fMRI

Composite images depicting the mean voxel-wise degree for 293
resting-state fMRI scans across all groups of participants scanned for
link density of 0.1 are shown in Fig. 3A. Examination of the voxel-wise
degree for rs-fMRI scans show a strong and significant site effect after
correction for multiple comparisons using false positive discovery for
the degreemaps (Fig. 3B). Additionally, degreemaps illustrated a signif-
icant dependency on age, but no differences in degree distribution for
sex. Fig. 3C shows regions with significant differences in mean degree
maps as computed using a voxel-wise three way ANOVA with site,
age, and gender as covariates. A significant difference in default mode
network (DMN) connectivity was observed across sites (Fig. 3D–E),
but no significant differences were observedwith respect to age or gen-
der. Consistent with these observations, examination of SFNR and SNR
in a subset of healthy female controls with age 20–35 showed sig-
nificant differences across site (Fig. 3F; Kruskal–Wallis, P b 0.05 for
both SFNR and SNR).

3.4. Diffusion tensor imaging

Despite efforts to standardize DTI image acquisition across sites, a
total of 6 different acquisition protocols were employed during the
MAPP Neuroimaging Study (Fig. 4A). Support from the MRI scanner
manufacturer (GE, Philips, and Siemens) and experts at each site were
required to resolve differences in scanner capabilities and configuration
across sites.Many of the sites used 60 diffusion sensitizing directionswith
b = 1000 s/mm2 and 8 reference b = 0 s/mm2 images (60 + 8b0,
NU + Stanford), while other sites used a comparable number of direc-
tions and reference images including 64 directions and 1 reference
image (64 + 1b0, UCLA), 61 directions and 8 reference images
(61 + 8b0, UCLA), 64 directions and 10 reference images (64 + 10b0,
Stanford). Only UAB was not able to acquire DTI data with more than
32 directions and instead acquired data with 32 directions and a single
reference image (32 + 1b0). However, all sites, except one, achieved
compatibility during the course of the study. The NeuroimagingWorking
Group agreed on a standard DTI sequence that could be implemented at
every site.

Significant spatial variations in FA and ADC were observed in statis-
tical parameter maps for all healthy volunteers and UCPPS and positive
control participantswith adequate quality DTIwhen evaluated between
sites. As shown in Fig. 4B, many deep GM and connecting WM struc-
tures demonstrated significantly higher or lower FA compared with
NU. When examining a 4 mm spherical ROI placed in the genu of the
corpus callosum, results demonstrated significant differences in FA
(Fig. 4C; ANOVA, P b 0.0001). Tukey's test for multiple comparisons
showed that NU and UCLA (61 + 8b0 protocol) had comparable FA in
this region, while UCLA (61 + 8b0 protocol) had significantly higher
FA compared with Stanford (both protocols) and UAB. Importantly,
the variability in FAmeasurementswithin the corpus callosumwas sub-
stantially lower in the NU dataset compared with other sites.

Lastly, DTI measurements from a 9 pixel ROI placed in the left
splenium of the corpus callosum, left geniculate fiber system, and left
cingulum bundle in a subset of healthy female volunteers ages 20–35
were examined (Fig. 4D). Significant differences in FA (Fig. 4E;
Kruskal–Wallis, P b 0.05), ADC, AD, and RD were observed across sites.

4. Discussion

4.1. Overview of trans-MAPP neuroimaging

The goal of the trans-MAPP Neuroimaging Study was to obtain multi-
modal MRI neuroimaging data by combining 3D T1-weighted structural,
rs-fMRI and DTI data from a large cohort of participants with UCPPS and
healthy and “positive” control study participants, and integrate those
data with clinical and epidemiological information, including biomarker
assays of bio-specimens. The primary objective of the MAPP Network
neuroimaging effort was to identify the structural/functional brain fea-
tures implicated in UCPPS that can inform integrated clinical phenotyping
efforts in the MAPP Network and ultimately inform on future clinical
studies (e.g., trial design) and clinicalmanagement (e.g., direct individual-
ized treatments toward phenotypic sub-groups). Even though it may not
be practical to use brain-based biomarkers in the clinic or in clinical trials,
they are important in validating symptombased patient subtypes that re-
spond to different types of therapies. In this regard, the MAPP Network
attempted to emulate the examples established by other pioneering neu-
roimaging research networks, including the International Consortium for
Brain Mapping (ICBM) (Mazziotta et al., 2001), ADNI (Jack et al., 2004),
fBIRN (Glover et al., 2012), NIH Pediatric MRI Database (Evans, 2006),
the Autism Brain Imaging Data Exchange (ABIDE) (Di Martino et al.,
2014), PharmaCog (Jovicich et al., 2013), and HIV Neuroimaging Consor-
tium (HIVNC) (Chang et al., 2004; Dewey et al., 2010). The MAPP Net-
work faces the additional challenge of identifying subjects with distinct
brain signatures in a highly heterogeneous clinical population that likely
encompasses multiple underlying disease states. As one of the core
symptoms of UCPPS, chronic pain is notorious for its subtle and variable
anatomical brain changes that impact local and global brain activity
(Farmer et al., 2011; May, 2011; Schmidt-Wilcke, 2008).

Pooling of UCPPS imaging data to facilitate detection of clinical sub-
groups is a central network goal. To support this objective, the present
study examined the presence and extent of between-center differences
for each neuroimaging modality. This investigation focused on the
MAPP Network UCPPS population as a whole, as well as a more homog-
enous subgroup of female healthy control participants. The analysis
strategies included several of the quality control methods described
by Huang (Huang et al., 2012) that were paired with additional novel
analytic approaches. The primary finding of the present study is the



Fig. 3. Resting-state fMRI results. A) Composite images depicting maps of mean voxel-wise degree of resting-state fMRI scans for link density of 0.1. B) Examination of the voxel-wise
degree for rs-fMRI scans showing a strong and significant site effect even after pFDR correction for multiple comparisons. Degree maps illustrate a significant dependency on age, but
no differences in degree distribution for gender. C) Regions with significant differences in mean degree maps as computed using a voxel-wise three way ANOVA with site, age, and
gender as covariates. D) To determine the biological relevance of rs-fMRI connectivity across sites, the most reliably identified network in human neuroimaging—the default mode
network, DMN—was identified per subject with voxel-wise independent components analysis and averaged across all subjects. E) Significant site differences in DMN connectivity were
localized in medial prefrontal regions, with no main effects observed for age or gender. F) Signal-to-Fluctuation Noise Ratio (SFNR, filled circles) and Signal-to-Noise Ratio (SNR, open
circles) from fBIRN analysis of the group of normal female control subjects stratified by site. Kruskal–Wallis tests suggest significant site differences for SFNR (H = 16.66, P = 0.002)
and for SNR (H = 16.27, P = 0.027).
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identification of significant between-center differences in all three types
of neuroimaging data and these differences persisted even when age
and gender were accounted for. Belowwe consider the potential causes
and consequences of these center differences have for neuroimaging-
based clinical phenotyping in UCPPS.

4.2. Possible explanations for observed site differences

In multi-site studies a prominent potential source of between-site
bias can proceed from an imbalance in the distribution of subjects,
such as differing numbers ofmen andwomen, age groups or participant
cohorts. However, one set of analyses performed in a highly homoge-
neous group (healthy control females aged 20–35 years) also showed
statistically significant site differences, suggesting that distribution of
subjects at sites may not be a likely source for the inter-site differences
we observed. Furthermore, another set of analyses specifically con-
trolled for age and gender. Other possible causes include differences be-
tween scanner hardware/software platforms and the use of different
image acquisition parameters and/or procedures. There is a growing
body of literature suggesting that MRI scanners produced by different
manufacturers, as well as different scanner models built by a single man-
ufacturer, can produce significantly different measurements (Abdulkadir



Fig. 4. DTI results. A) Visualization of diffusion encoding directions on a sphere for DTI protocols at each site. Note that UCLA and Stanford used two different DTI protocols for MAPP
Network neuroimaging. B) Voxel-wise differences in fractional anisotropy (FA) throughout the brain relative to NU (Siemens 3 T Trio, 60 directions + 8 b = 0 s/mm2) in healthy
volunteers. C) Mean FA measurements in the genu of the corpus callosum demonstrating significant differences across sites. D) Regions of interest (ROIs) for major fiber tracts were
selected for between-site comparison of FA in the cohort of normal healthy females age 20–35: the left geniculate fiber system (blue) left splenium of the corpus callosum (red) and
left cingulum bundle (green). E) Comparison of mean FA measurements from the ROIs illustrated in (D) stratified by site. Results show significant site differences in the corpus
callosum (red ROI, H = 13.17, P = 0.0043), cingulum bundle (green ROI, H = 17.30, P = 0.0006), and geniculate fibers (blue, ROI) H = 13.00, P = 0.0046).

73J.R. Alger et al. / NeuroImage: Clinical 12 (2016) 65–77
et al., 2011; Bendfeldt et al., 2012; Clarkson et al., 2009; Friedman and
Glover, 2006a,b; Friedman et al., 2006; Kruggel et al., 2010; Reig et al.,
2009; Saotome et al., 2012; Stonnington et al., 2008; Takao et al., 2012;
Yendiki et al., 2010). Authors of several of these studies have stated that
the between-scanner differences were small compared to differences
produced by disease (Abdulkadir et al., 2011; Stonnington et al.,
2008) or normal aging (Bendfeldt et al., 2012; Evans, 2006;
Kruggel et al., 2010). However, given that chronic pain populations
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are often distinguished by subtle brain changes (May, 2011; Schmidt-
Wilcke, 2008) such small differences may inhibit detection of disease-
specific biomarkers for transition to pain chronification, pain mainte-
nance, and predisposition to develop chronic pain. Conversely, if sig-
nificant differences in imaging changes are observed, they should be
considered robust enough to survive the across-site differences and asso-
ciated noise.
4.3. Site differences in structural MRI measurements

Across site evaluations as part of theMAPPNeuroimaging Study sug-
gest PhilipsMRI systems tended to produce lower GMvolumeestimates
when compared with Siemens or GEMS systems. This may be attribut-
able to the reduced digital resolution that Philips systems use to repre-
sent MR signal intensity. Low digital resolution reduces the accuracy of
distinguishing small signals of background, CSF and GM and this may
have resulted in the failure of intensity normalization and brain extrac-
tion and therefore to low measures of GM volume. This hypothetical
picture is supported by evidence of reduced low signal contrast in
ADNI and fBIRN phantom images (Fig. 1). Moreover fuzzy c-means tis-
sue segmentation produced ‘false’ CSF assignments in cortical graymat-
ter more frequently for PHC 3D-T1-MRI images compared with those
collected by Siemens and GEMS scanners. The Philips scanner at Michi-
gan produced the lowest GM volumes. It is hypothesized that this bias
resulted from a combination of reduced Philips digital resolution com-
bined with the fact that the University of Michigan consistently used a
voxel size that was approximately 35% smaller than used at the other
centers. These observations underscore the importance of not only ac-
quiring high quality images, but also considering how post processing
algorithms interact with acquired data.

In addition to the between-manufacturer differences, within manu-
facturer differences were also observed. The Siemens scanners at NW
and UCLA were nearly identical, yet phantom and human studies sug-
gested these two MRI units have intrinsically different SNR perfor-
mance, which may reflect the subtle differences observed between
NW and UCLA GM volumes.
4.4. Site differences in rs-fMRI measurements

rs-fMRI protocols were well harmonized across MAPP Network scan-
ning sites and were modeled after previous fBIRN work (Friedman and
Glover, 2006a,b; Friedman et al., 2006; Glover et al., 2012; Magnotta
and Friedman, 2006). Nevertheless, site differences in fBIRN QC parame-
ters (SNR and SFNR) were still observed. These site differences may be
due to intrinsic SNR and digital resolution issues that have been described
above. SFNR may be sensitive to the basic performance of several major
MRI subsystems including the radiofrequency transmit and the gradient
systems. The fact that two nearly identical Siemens systems (NW and
UCLA) produced consistently different SFNR and SNR reinforces that
rs-fMRI performance may be dependent on technological factors other
than manufacturer.
4.5. Site differences in DTI measurements

Performance differences in FA within the MAPP Network data were
observed, in agreementwith othermulticenter studies (Fox et al., 2012;
Zhu et al., 2011), despite FA being themost reproducible DTI parameter
across sites (Fox et al., 2012; Jovicich et al., 2014; Vollmar et al., 2010).
The precise mechanisms that underlie the differences are currently
under investigation; however, it is conceivable that the combination
of different diffusion sensitizing gradient schemes, SNR performance,
image filtering, and number of b=0 s/mm2 imagesmay be responsible
for in site-dependent differences in DTI metrics.
4.6. Impact of site differences in pooled analyses

Pooling multicenter neuroimaging data has clear advantages over
single center study data, including increased sample sizes needed to
identify clinical subgroups, greater statistical power, and the potential
to rapidly advance clinical phenotyping and treatment. The presence
of scanner-related differences does not imply the data collected for
the MAPP Network cannot be pooled. The statistical impact of pooling
depends not only on the type and magnitude of technological differ-
ences but also on effect size and the number of subjects studied. For ex-
ample, if biological effect sizes are similar to or greater than between-
center or scanner-related differences, pooling may still have value but
may require careful statistical corrections. In contrast, the present
study demonstrates that pooling of multimodal imaging data will likely
require appropriate statistical corrections to account for site and/or
scanner effects that may otherwise obscure clinically meaningful fea-
tures of brain function and structure. For example, differences in FA
measurements were significant, but small (b0.1) relative to expected
biologic changes (0.1–0.2) when comparing healthy control data be-
tweenNWandUCLA, suggesting site differencesmay be largely ignored
when combining the data (Fig. 4A). On the other hand, the Stanford
64+ 10b0DTI protocol, whichwasmarkedly different, showed site dif-
ferences on the order of those expected biologically (~0.2), indicating
that site corrections has to be consideredwhen using these data. Similar
arguments can be made regarding fMRI and structural data, where dif-
ferences in image quality between sites may provide less sensitivity to
patient/control differences. Thus, there is a need to balance the in-
creased statistical power obtained by increasing patient numbers
while also beingmindful of and correcting for site differences. It is nota-
ble that several authors have concluded that scanner-related bias is
small compared to age, gender and disease changes (see above), yet
most disease-related neuroimaging work has focused on populations
with overt neurologic and/or psychiatric disease characterized by
gross brain abnormalities. In contrast, the brain changes associated
with disease processes that underlie UCPPS or other chronic pain condi-
tions may be subtle such that effects could be overwhelmed by scanner
or site-related biases.

4.7. Between-site harmonization

Clinical and research MRI centers use a wide variety of unique MRI
hardware/software system configurations. Accordingly the MAPP
Network sought to develop a practical cross-platform multimodal
image acquisition protocol. Practical strategies were used to harmonize
image acquisition parameters and procedures across five academic bio-
medical research centers using eight different MRI hardware/software
systems produced by the three major MRI systems manufacturers. The
primary approach used to achieve harmonization was to encourage
centers to use a consistent set of forward-prescribed image acquisition
parameters, while respecting each center's capabilities, limitations,
and preferred protocols. The initial image acquisition parameters and
procedures were agreed upon in a series of preliminary teleconferences
in which technical experts from each center participated. Prior to study
initiation, phantom imaging was used to assess the quality of each
center's data and procedures. Lastly, image quality control was assured
through both qualitative and quantitative assessments of images
acquired and subsequently uploaded into the MAPP Network neuroim-
aging database. This process ensured all investigators using MAPP Net-
work neuroimaging data were using the highest quality data available.

The MAPP Network encountered several problems with achieving
optimal protocol harmonization. These problems arose from the follow-
ing factors, given in order of significance: 1) Scanners made by different
MRI manufacturers are intrinsically different. For example, the network
investigators did not anticipate that digital resolution in 3D T1-
weighted structural MR images produced by Philips MR systems
would be further compromised by the use of small voxel sizes at one
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center. Similarly, the investigatorswere unable to addressmanufacturer
differences in DTI acquisition software and procedures. Furthermore,
there are manufacturer-specific differences in fMRI image reconstruc-
tion as has been described by Friedman and Glover (Friedman and
Glover, 2006a,b; Friedman et al., 2006). 2) As is the case with most
large-scale studies, human error contributed to acquisition and proce-
dural deviations that had to be identified through quality control assess-
ment. 3) The expected and inevitable upgrades occurred and these may
have contributed to some of the between-center variability.

Despite subtle differences in neuroimaging measurements between
sites, the MAPP Network has successfully used various statistical tech-
niques (see references listed in this paragraph) to correct for these site
differences and demonstrate both functional and structural changes
within the brain due to chronic pelvic pain using the combined, multi-
site database. The MAPP Network has published 7 original manuscripts
using multisite neuroimaging data demonstrating these successes
(Bagarinao et al., 2014; Farmer et al., 2015; Kairys et al., 2015;
Kilpatrick et al., 2014; Kutch et al., 2015; Martucci et al., 2015;
Woodworth et al., 2015). For example, a recently published MAPP Net-
work study by Bagarinao et al. (2014) used a multivariate pattern clas-
sification approach to detect structural changes in brain morphology
associatedwith chronic pelvic pain, noting significant cortical graymat-
ter changes in the primary somatosensory cortex, pre-supplementary
motor area, hippocampus, and amygdala consistent with previous stud-
ies in visceral pain syndromes. This study used 33 female UCPPS partic-
ipants and 33 age- and gender-matched healthy control subjects
selected from all 5 sites. Similarly, a published MAPP Network study
by Kairys et al. (2014) examined UCPPS females and noted significantly
increased gray matter volume in the primary somatosensory cortex,
superior parietal lobe, and supplemental motor area, also noting corre-
lation of gray matter volume with pain, mood, and urological symp-
toms. This study used the same dataset as Bagarinao et al. A recent
MAPP Network functional MRI study by Kilpatrick et al. (2014) demon-
strated alterations in the frequency distribution in viscerosensory, or
posterior insula, somatosensory, and supplementary motor regions in
female UCPPS participants compared with healthy controls, implying
that women with these conditions have alterations in connectivity
within cortico-cerebellar networks previously shown to be associated
with bladder function This study utilized all female UCPPS participants
(82) and healthy control participants (85) from all 5 sites that
underwent neuroimaging as part of MAPP Network protocols. In addi-
tion, a MAPP Network functional MRI study by Kutch et al. (Kutch
et al., 2015) illustrated altered motor control activity and connectivity
specific to the pelvic floor inmale UCPPS participants. So far two studies
have been published that utilized the DTI data to evaluate differences in
UCPPS subjects. Farmer et al. looked at skeletonized FA values in female
subjects and found distributed regions of decreased FA as well as in-
creased in FA in superior brain regions and inferior regions associated
with intra-hemisphericwhitematter fibers; these someof these regions
of different FA correlated with symptom scores (Farmer et al., 2015).
Woodworth et al. looked at voxel-wise changes in traditional DTI
values, such as FA and mean diffusivity (MD), as well as advanced and
higher-order diffusion MRI metrics, such as track density imaging
(TDI) and generalized anisotropy (GA), and found global decreases in
FA, GA and TDI, aswell as global increases inMD, and select regions pre-
sented with increases in FA and GA; the mean values of these metrics
showed trends of correlations with symptom scores and disease dura-
tion (Woodworth et al., 2015). Together, these studies clearly demon-
strate how increased statistical power resulting from large multicenter
populationswithin theMAPP Network, combinedwith appropriate sta-
tistical corrections, can be used to overcome significant site differences
likely arising from slight differences in acquisition parameters and hard-
ware specifications. Numerous analyses of the rich, multi-site neuroim-
aging data, including stratifications using urologic and non-urologic
measures and incorporation of results from other, integrated MAPP
Network studies (e.g., biomarker efforts, quantitative sensory testing,
etc.) are ongoing and are expected to allow for an unprecedented in-
sight into the pathophysiology of UCPPS.

4.8. Correctionmethods implemented inMAPPmanuscripts and theoretical
framework for multi-site correction

In order to account for site differences in the analysis of multi-site
data the main technique available to researchers involves measuring
the mean across sites and normalizing. This can either be done either
with resultant values derived from ROIs or with voxel-wise approaches,
or can be taken into account in a general linear model (GLM) or similar
statistical models. Many of the current neuroimaging MAPP manu-
scripts have taken this approach. Bagarinao et al. used data from all
five sites, and implemented an additional layer of visual quality assess-
ment; for regression of site effects of GM intensity, they applied a voxel-
wise correction factor determined by the mean intensity of the voxel,
divided by the mean GM intensity of voxels for that site, minus the
mean intensity of GM voxels for all sites (Bagarinao et al., 2014). Farmer
et al. used a similar correctionmethod for their data, using FA values de-
rived from DTI as the measure of interest, but employing a normaliza-
tion with respect to the site mean and the global mean of the study by
subtracting the patients mean from the mean of the site, and added
this to the global mean to obtain a normalized FA value (Farmer et al.,
2015). For the frequency analysis performed in their study, Kilpatrick
et al. implemented a flexible factorial analysis in SPM that accounted
for site, and in the subsequent functional connectivity analysis per-
formed from the significant clusters in the frequency analysis they
used site as a covariate (Kilpatrick et al., 2014).

Site differences are heavily dependent on the analysis being per-
formed: for some analyses that use larger ROIs or robust post-
processing tools, correction for sitemay not be strictly necessary. For ex-
ample, Kairys et al. analyzed a particular gray matter region (primary
sensory cortex) and found no significant differences across sites for vol-
ume or TIV (which is a sum of the value of GM, WM, and CSF over the
whole brain), in either the ANOVA analysis or GLM analyses they per-
formed (Kairys et al., 2015). Martucci et al. performed an ICA analysis
and a seed-based connectivity analysis, and to verify that site differ-
ences did not cause sufficient effects to affect the analysis, they per-
formed supplemental tests with regression of site and found virtually
the same results as the analysis performed without site regression
(Martucci et al., 2015). For some analyses selective use of particular im-
aging data based on homogeneity of scanner and sites can be useful. For
example, Kutch et al. selectedmale patients fromNWandUCLA for their
rs-fMRI analysis, and when evaluating differences across sites found no
difference across sites in both the ANOVA analysis and in a post-hoc
multiple comparisons test (Kutch et al., 2015). Similarly, Woodworth
et al. opted to use subject scans from NW and UCLA data for their DTI
analysis, given that they used advanced fiber-tracking techniques and
computed higher order diffusion metrics such as GA, and they included
site as a covariate in their model and found only minor differences be-
tween sites in a supplemental analysis (Woodworth et al., 2015). As
can be seen by the range of approaches to site correction outlined in
thesemanuscripts, they are dependent on the level and type of analysis
performed, and thus the best directions for correcting for sites will be
highly dependent on the type of analysis performed.

4.9. Recommendations for the future

Several recent studies (published after theMAPP Networkwas initi-
ated) focused on calibration methods to make data generated by differ-
ent MRI scanners more homogeneous (Clarkson et al., 2009; Maikusa
et al., 2013; Marchewka et al., 2014; Ribbens et al., 2014), and these
methods provide valuable guidance to achieve better harmonization.
Furthermore, once the technical cause(s) of scanner/center-related
bias are understood (e.g., SNR differences, digital resolution differ-
ences, gradient table differences, or subtle differences in acquisition
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parameters), it is possible to develop pre-specified (or post hoc) ap-
proaches that address the contributing factors. Ongoing evaluations
of technical confounds and biases continue to clarify such factors in
the MAPP Network data.

Longitudinal collection of a complexmultiparametric image acquisi-
tion procedure necessitates frequent and detailed quality control pipe-
lines. Given the inevitable biases in multicenter data, investigators
who plan to embark on multicenter neuroimaging projects should con-
sider that core imaging laboratory personnel, equipped with software
systems designed to perform rapid turnaround QC, are critical assets
for establishing initial harmonization and sustaining it longitudinally
(Seibyl et al., 2010) Equally important is the identification of a technical
expert at each center, such as a senior technologist orMR physicist, who
is knowledgeable about their center's MRI equipment and can make
changes to acquisition parameters when needed.

Moving toward the future, these changes have been implemented
for the phase II of the MAPP study. Improvements in scanner technolo-
gy, further development of standardized multisite protocols, and cus-
tomized collaboration methods were developed as part of the MAPP I
Network Study. The imaging protocols for each modality have been
standardized to provide the highest common denominator scans for
this longitudinal multi-site study. An automated QC pipeline to check
DICOM parameters has been implemented and semi-automated quality
control of incoming data will be performed (Labus et al., 2015). Coordi-
nation between the data collection, neuroimaging, and governance
committees has led to a cohesive approach for further imaging studies.
It is expected that this unprecedented collaborative neuroimaging effort
implemented in MAPP I will lead to a better understanding of UCPPS
pathophysiology, the identification of neurobiological subgroups, and
the identification of risk factors. In addition, the findings from these
studies are likely to inform future clinical trials in UCPPS.
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