883 research outputs found

    Imprinting and Editing of the Human CD4 T Cell Response to Influenza Virus

    Get PDF
    Immunity to influenza is unique among pathogens, in that immune memory is established both via intermittent lung localized infections with highly variable influenza virus strains and by intramuscular vaccinations with inactivated protein-based vaccines. Studies in the past decades have suggested that the B cell responses to influenza infection and vaccination are highly biased by an individual's early history of influenza infection. This reactivity likely reflects both the competitive advantage that memory B cells have in an immune response and the relatively limited diversity of epitopes in influenza hemagglutinin that are recognized by B cells. In contrast, CD4 T cells recognize a wide array of epitopes, with specificities that are heavily influenced by the diversity of influenza antigens available, and a multiplicity of functions that are determined by both priming events and subsequent confrontations with antigens. Here, we consider the events that prime and remodel the influenza-specific CD4 T cell response in humans that have highly diverse immune histories and how the CD4 repertoire may be edited in terms of functional potential and viral epitope specificity. We discuss the consequences that imprinting and remodeling may have on the potential of different human hosts to rapidly respond with protective cellular immunity to infection. Finally, these issues are discussed in the context of future avenues of investigation and vaccine strategies

    Laser-Based Propagation of Human iPS and ES Cells Generates Reproducible Cultures with Enhanced Differentiation Potential

    Get PDF
    Proper maintenance of stem cells is essential for successful utilization of ESCs/iPSCs as tools in developmental and drug discovery studies and in regenerative medicine. Standardization is critical for all future applications of stem cells and necessary to fully understand their potential. This study reports a novel approach for the efficient, consistent expansion of human ESCs and iPSCs using laser sectioning, instead of mechanical devices or enzymes, to divide cultures into defined size clumps for propagation. Laser-mediated propagation maintained the pluripotency, quality, and genetic stability of ESCs/iPSCs and led to enhanced differentiation potential. This approach removes the variability associated with ESC/iPSC propagation, significantly reduces the expertise, labor, and time associated with manual passaging techniques and provides the basis for scalable delivery of standardized ESC/iPSC lines. Adoption of standardized protocols would allow researchers to understand the role of genetics, environment, and/or procedural effects on stem cells and would ensure reproducible production of stem cell cultures for use in clinical/therapeutic applications

    Life in Hot Carbon Monoxide: The Complete Genome Sequence of Carboxydothermus hydrogenoformans Z-2901

    Get PDF
    We report here the sequencing and analysis of the genome of the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. This species is a model for studies of hydrogenogens, which are diverse bacteria and archaea that grow anaerobically utilizing carbon monoxide (CO) as their sole carbon source and water as an electron acceptor, producing carbon dioxide and hydrogen as waste products. Organisms that make use of CO do so through carbon monoxide dehydrogenase complexes. Remarkably, analysis of the genome of C. hydrogenoformans reveals the presence of at least five highly differentiated anaerobic carbon monoxide dehydrogenase complexes, which may in part explain how this species is able to grow so much more rapidly on CO than many other species. Analysis of the genome also has provided many general insights into the metabolism of this organism which should make it easier to use it as a source of biologically produced hydrogen gas. One surprising finding is the presence of many genes previously found only in sporulating species in the Firmicutes Phylum. Although this species is also a Firmicutes, it was not known to sporulate previously. Here we show that it does sporulate and because it is missing many of the genes involved in sporulation in other species, this organism may serve as a “minimal” model for sporulation studies. In addition, using phylogenetic profile analysis, we have identified many uncharacterized gene families found in all known sporulating Firmicutes, but not in any non-sporulating bacteria, including a sigma factor not known to be involved in sporulation previously

    FIRST J102347.6+003841: The First Radio-Selected Cataclysmic Variable

    Full text link
    We have identified the 1.4 GHz radio source FIRST J102347.6+003841 (hereafter FIRST J1023+0038) with a previously unknown 17th-mag Galactic cataclysmic variable (CV). The optical spectrum resembles that of a magnetic (AM Herculis- or DQ Herculis-type) CV. Five nights of optical CCD photometry showed variations on timescales of minutes to hours, along with rapid flickering. A re-examination of the FIRST radio survey data reveals that the radio detection was based on a single 6.6 mJy flare; on two other occasions the source was below the ~1 mJy survey limit. Several other magnetic CVs are known to be variable radio sources, suggesting that FIRST J1023+0038 is a new member of this class (and the first CV to be discovered on the basis of radio emission). However, FIRST J1023+0038 is several optical magnitudes fainter than the other radio-detected magnetic CVs. It remains unclear whether the source simply had a very rare and extraordinarily intense radio flare at the time of the FIRST observation, or is really an unusually radio-luminous CV; thus further observations are urged.Comment: 4 pages, 3 figures; accepted for December 2002 issue of Publications of the Astronomical Society of the Pacifi

    A randomised trial of subcutaneous intermittent interleukin-2 without antiretroviral therapy in HIV-infected patients: the UK-Vanguard Study

    Get PDF
    Objective: The objective of the trial was to evaluate in a pilot setting the safety and efficacy of interleukin-2 (IL-2) therapy when used without concomitant antiretroviral therapy as a treatment for HIV infection. Design and Setting: This was a multicentre randomised three-arm trial conducted between September 1998 and March 2001 at three clinical centres in the United Kingdom. Participants: Participants were 36 antiretroviral treatment naive HIV-1-infected patients with baseline CD4 T lymphocyte counts of at least 350 cells/mm(3). Interventions: Participants were randomly assigned to receive IL-2 at 15 million international units (MIU) per day ( 12 participants) or 9 MIU/day ( 12 participants) or no treatment ( 12 participants). IL-2 was administered by twice-daily subcutaneous injections for five consecutive days every 8 wk. Outcome Measures: Primary outcome was the change from baseline CD4 T lymphocyte count at 24 wk. Safety and plasma HIV RNA levels were also monitored every 4 wk through 24 wk. The two IL-2 dose groups were combined for the primary analysis. Results: Area under curve (AUC) for change in the mean CD4 T lymphocyte count through 24 wk was 129 cells/mm(3) for those assigned IL-2 ( both dose groups combined) and 13 cells/mm(3) for control participants (95% CI for difference, 51.3 - 181.2 cells/mm(3); p = 0.0009). Compared to the control group, significant increases in CD4 cell count were observed for both IL-2 dose groups: 104.2/mm(3) ( p = 0.008) and 128.4 cells/mm(3) ( p = 0.002) for the 4.5 and 7.5 MIU dose groups, respectively. There were no significant differences between the IL-2 (0.13 log(10) copies/ ml) and control (0.09 log(10) copies/ml) groups for AUC of change in plasma HIV RNA over the 24-wk period of follow- up ( 95% CI for difference, - 0.17 to 0.26; p = 0.70). Grade 4 and dose-limiting side effects were in keeping with those previously reported for IL-2 therapy. Conclusions: In participants with HIV infection and baseline CD4 T lymphocyte counts of at least 350 cells/mm(3), intermittent subcutaneous IL-2 without concomitant antiretroviral therapy was well tolerated and produced significant increases in CD4 T lymphocyte counts and did not adversely affect plasma HIV RNA levels

    Primary myoblasts from intrauterine growth-restricted fetal sheep exhibit intrinsic dysfunction of proliferation and differentiation that coincides with enrichment of inflammatory cytokine signaling pathways

    Get PDF
    Intrauterine growth restriction (IUGR) is linked to lifelong reductions in muscle mass due to intrinsic functional deficits in myoblasts, but the mechanisms underlying these deficits are not known. Our objective was to determine if the deficits were associated with changes in inflammatory and adrenergic regulation of IUGR myoblasts, as was previously observed in IUGR muscle. Primary myoblasts were isolated from IUGR fetal sheep produced by hyperthermia-induced placental insufficiency (PI-IUGR; n = 9) and their controls (n = 9) and from IUGR fetal sheep produced by maternofetal inflammation (MI-IUGR; n = 6) and their controls (n = 7). Proliferation rates were less (P \u3c 0.05) for PI-IUGR myoblasts than their controls and were not affected by incubation with IL-6, TNF-α, norepinephrine, or insulin. IκB kinase inhibition reduced (P \u3c 0.05) proliferation of control myoblasts modestly in basal media but substantially in TNF-α-added media and reduced (P \u3c 0.05) PI-IUGR myoblast proliferation substantially in basal and TNF-α-added media. Proliferation was greater (P \u3c 0.05) for MI-IUGR myoblasts than their controls and was not affected by incubation with TNF-α. Insulin increased (P \u3c 0.05) proliferation in both MI-IUGR and control myoblasts. After 72-h differentiation, fewer (P \u3c 0.05) PI-IUGR myoblasts were myogenin+ than controls in basal and IL-6 added media but not TNF-α-added media. Fewer (P \u3c 0.05) PI-IUGR myoblasts were desmin+ than controls in basal media only. Incubation with norepinephrine did not affect myogenin+ or desmin+ percentages, but insulin increased (P \u3c 0.05) both markers in control and PI-IUGR myoblasts. After 96-h differentiation, fewer (P \u3c 0.05) MI-IUGR myoblasts were myogenin+ and desmin+ than controls regardless of media, although TNF-α reduced (P \u3c 0.05) desmin+ myoblasts for both groups. Differentiated PI-IUGR myoblasts had greater (P \u3c 0.05) TNFR1, ULK2, and TNF-α-stimulated TLR4 gene expression, and PI-IUGR semitendinosus muscle had greater (P \u3c 0.05) TNFR1 and IL6 gene expression, greater (P \u3c 0.05) c-Fos protein, and less (P \u3c 0.05) IκBα protein. Differentiated MI-IUGR myoblasts had greater (P \u3c 0.05) TNFR1 and IL6R gene expression, tended to have greater (P = 0.07) ULK2 gene expression, and had greater (P \u3c 0.05) β-catenin protein and TNF-α-stimulated phosphorylation of NFκB. We conclude that these enriched components of TNF-α/TNFR1/NFκB and other inflammatory pathways in IUGR myoblasts contribute to their dysfunction and help explain impaired muscle growth in the IUGR fetus. Lay Summary-- Myoblasts are stems cells whose functional capacity can limit muscle growth. However, stressful intrauterine conditions cause these cells to be intrinsically dysfunctional. This restricts muscle growth capacity, leading to intrauterine growth restriction (IUGR) of the fetus, low birth weight, and less muscle mass after birth. Consequently, meat yield is reduced in IUGR-born food animals and glucose homeostasis is impaired in IUGR-born humans, which contributes to metabolic dysfunction. Intrinsic dysfunction of IUGR myoblasts has been previously observed, but the fetal programming changes (i.e., permanent changes in the development of cellular mechanisms that explains different functional outcomes) have not been identified. This study shows that one mechanism is the enhancement of signaling pathways for TNF-α and other inflammatory cytokines. These cytokines have roles in stress responses and regulation of muscle growth. Programmed enhancement of these pathways means that IUGR myoblasts are more responsive to even normal amounts of circulating cytokines. Unfortunately, the primary response of myoblasts to cytokines is slower differentiation (i.e., cellular transformation necessary for muscle growth). Programmed enhancement of this response directly impedes myoblast-dependent muscle growth, and the deficit is lifelong. However, identifying this mechanism is a fundamental step for developing strategies to improve muscle growth in low birth weight offspring
    corecore