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Immunity to influenza is unique among pathogens, in that immune memory is established

both via intermittent lung localized infections with highly variable influenza virus strains

and by intramuscular vaccinations with inactivated protein-based vaccines. Studies in

the past decades have suggested that the B cell responses to influenza infection and

vaccination are highly biased by an individual’s early history of influenza infection. This

reactivity likely reflects both the competitive advantage that memory B cells have in an

immune response and the relatively limited diversity of epitopes in influenza hemagglutinin

that are recognized by B cells. In contrast, CD4T cells recognize a wide array of epitopes,

with specificities that are heavily influenced by the diversity of influenza antigens available,

and amultiplicity of functions that are determined by both priming events and subsequent

confrontations with antigens. Here, we consider the events that prime and remodel

the influenza-specific CD4T cell response in humans that have highly diverse immune

histories and how the CD4 repertoire may be edited in terms of functional potential and

viral epitope specificity. We discuss the consequences that imprinting and remodeling

may have on the potential of different human hosts to rapidly respond with protective

cellular immunity to infection. Finally, these issues are discussed in the context of future

avenues of investigation and vaccine strategies.
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OVERVIEW

Immunological memory to influenza is established by infection and vaccination. Epidemiological
studies suggest that children in North America are typically infected with seasonal influenza
at a rate of 5–15% each year, depending on age and history of vaccination (1–3). In the
U.S., it is now recommended that all children at 6 months of age and older receive yearly
vaccination (4). Currently licensed vaccines include either intranasal inoculation of cold adapted
influenza vaccines (CAIV), such as Flumist R©, or inactivated influenza vaccine (IIV), delivered
via intramuscular injection. Typically, the first vaccinations are with IIV, delivered in infants as
sequential vaccinations separated by 28 days between prime and boost. After 2 years of age, children
can be administered CAIV intranasally, with the goal of boosting cellular and local immunity in
the respiratory tract. Thus, by many different mechanisms, CD4T cells specific for influenza viral
antigens are established early in life. Worldwide, most adults have likely first encountered influenza
by infection, because influenza vaccines were not widely used until the last two decades. In contrast,
most young children in the US could have been exposed to influenza antigens first by vaccination.
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The human host confronts influenza antigens in diverse
forms and at somewhat unpredictable intervals through periodic
infections and yearly vaccinations. How these different types of
encounters with influenza virus and its antigens affect CD4T cell
memory and phenotype is critically important to understand,
because this accumulated memory will influence all subsequent
responses. Despite the importance of this issue, currently our
knowledge is quite limited. The concept of “imprinting” of
influenza immunity has garnered a great deal of interest recently
but this has largely been in the context of the B cell response
(5–8). Here we consider the potential impact of CD4T cell
imprinting and editing of the human CD4T cell repertoire to
influenza and the potential consequences this might have on
protective immunity to infection.

CHARACTERISTICS OF THE CD4T CELL
RESPONSE TO INFECTION AND
VACCINATION

Two aspects of the CD4T cell response to infection are
strikingly different from that of the B cell repertoire. First, the
epitope specificity is tremendously diverse in human CD4T
cells, consisting of perhaps hundreds of different epitopes. This
reactivity is determined in part by the multiple viral proteins
targeted by CD4T cells, stable binding of the antigenic peptide to
MHC class II molecules (9–11) and by the precursor frequency of
the CD4T cells in the host to any given peptide (12). Even mice
that express only one to two MHC class II molecules elicit CD4T
cells specific for 25–80 different peptide epitopes, distributed
across both surface virion proteins such as hemagglutinin (HA)
and neuramindase (NA), and internal virion proteins such as
nucleoprotein (NP) and matrix protein (M1) (13–15). These
antigen specificities have also been observed in humans (16–
22). Due to expression of multiple HLA-class II isoforms and
heterozygosity, humans can express as many as ten different class
II molecules. As a result, they are likely to respond to a much
wider array of peptide epitopes than do typical inbred mice.
This complexity makes it extremely difficult to quantify reactivity
to any particular influenza-derived peptide. Also complicating
estimation of the diversity of the primary response of human
CD4T cells to infection are limitations in sampling tissues
that are at the site of the response. Procedures are currently
being developed to more broadly survey lymph nodes and the
respiratory tract after infection (23–25). We believe that more
efforts of this type are essential to understand the dynamic
features of human immunity to influenza and long-termmemory
in the human host. However, at present, we can only estimate the
breadth of human CD4T cell immunity based on extrapolation
of studies in animal models.

The second important distinction between human influenza-
specific B cells and CD4T cells is the functional complexity of
the elicited response to infection. Accumulated studies to date
have shown that the effector function and fate of CD4T cells after
priming by influenza infection are heterogeneous, and include
follicular helper cells (“Tfh”), that remain in the lymph node
for extended periods of time and facilitate B cell responses,

prototypical Th1 cells that either enter recirculation or home
to the lung to establish tissue resident memory, and cytotoxic
CD4T cells that are primarily detected in the respiratory tract
[reviewed in (26)] (27, 28). Each of these subsets has distinct
transcriptional profiles (29). The elements within the lung
draining lymph node that control commitment to alternate fates
of CD4T cells are not well-understood. Differentiation decisions
during CD4T cell priming have been attributed to the local
microenvironment, particularly cytokines (30, 31), but in the case
of influenza infection, and dominant Th1 biased response, many
other distinct functional subsets of CD4T cells quickly emerge.
Beyond the cytokine milieu, there are other parameters suggested
to shape the CD4T cell response to infection, including the
impact of T cell receptor affinity (32, 33) and the epitope density
that CD4T cells encounter as they enter the antigen draining
lymph node (34, 35).

In contrast to the diversity in specificity and functionality
elicited by CD4T cells in response to infection, vaccination
with licensed vaccines is currently designed to elicit HA-specific
neutralizing antibodies. Early vaccines were produced from
isolated virions that were simply chemically inactivated prior to
administration to humans (36). These early whole inactivated
vaccines were highly immunogenic, likely due to the viral RNA
content, and contained diverse influenza proteins (37). Since the
1960s, vaccine production has been progressively modified to
be less reactogenic in order to increase compliance and safety,
and to be more highly enriched for the HA protein, as our
understanding of the role of neutralizing antibody in sterilizing
protection from influenza has grown. Accordingly, the CD4T
cell responses to influenza vaccines have become focused in
specificity and more limited in inflammatory response (38, 39).
A recently licensed influenza vaccine now contains only pure
HA proteins (Flublok R© Quadrivalent) (40), with the relevant HA
from each circulating strain isolated from transfected insect cells,
thus further focusing the immune response to the HA proteins.
Whether increasingly purified influenza vaccines endow the host
with more or less protection from infection is not known at
this time. This may ultimately limit the specificity of CD4T
cells to highly diverse HA proteins, diminishing cross protection
against diverse influenza strains. Protein vaccines delivered
in the absence of adjuvant to naïve individuals elicit CD4T
cells of limited functional complexity (41–44). Both of these
features may limit the overall protective capacity induced by
influenza vaccines.

IMPRINTING AND EDITING IN THE CD4T
CELL RESPONSE AMONG DIFFERENT
AGE GROUPS AND INDIVIDUALS

By imprinting, we refer to the possibility that certain types
of influenza confrontations, determined by age (e.g., the very
young) or type (e.g., infection), permanently bias subsequent
responses. Editing refers to the possibility that the CD4T cell
repertoire is remodeled with each subsequent encounter with
influenza viruses and vaccines. Knowledge of these issues is
essential in order to both predict and potentially design new
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vaccines that most effectively poise the host for future immunity.
Although imprinting in influenza immunity is most commonly
discussed with regard to the B cell response, we propose here that
imprinting may also have a dramatic impact on the specificity,
phenotype and persistence of the CD4T cell repertoire.

Unlike animal models of infection or vaccination that might
experience primary and perhaps secondary immune responses,
the human immune system is primed and boosted with influenza
antigens numerous times over a lifetime. Figure 1 illustrates
the way these events may vary by the single parameter of age.
The oldest individuals (>65 years of age) were likely exposed
to influenza first through infection, and have had numerous
subsequent exposures to distinct circulatingH1N1,H2N2,H3N2,
and influenza B viruses through infection [reviewed in (36,
47)]. Thus, based on periodic infections with different influenza
viruses, we would expect that this oldest cohort of individuals
would have accumulated a highly diverse CD4T cell repertoire
to distinct virus proteins. However, based on evolving vaccine
recommendations, the immune repertoire of the over 65 cohort
would have been perturbed by yearly vaccination for the past 1–2
decades [reviewed in (36, 48)]. Individuals in the 50–60 year old
demographic may display the same pattern of early-life influenza
virus exposure, but may not have received the yearly influenza
vaccination suggested for older people. Conversely, children 15
years old and younger may have had their first confrontation
with influenza through intramuscular vaccination with vaccines
comprised of proteins from multiple virus strains, and enriched
for HA. Whether and how frequently young children experience
influenza infections is quite difficult to know with certainty,
because many infections cause only mild disease, particularly
among vaccinated individuals.

The simplest prediction of these scenarios is that older
adults would have the largest epitope diversity of CD4T cells,
specific for many influenza virus proteins, with the most diverse
functional potential, generated by each infection, while the
youngest cohort might have a highly enriched HA-specific CD4T
cell repertoire generated largely by vaccination and perhaps
boosted periodically by mild infections.

This simple model discussed above fails to account for several
features of influenza immunity. First, in terms of the circulating
repertoire of memory CD4T cells that accumulates in humans,
the potential requirement for periodic boosting to sustain CD4T
cell specificities is not clear. Also, it is not known if different
functional subsets (e.g., Tfh vs. cytolytic cells) differ in this
regard. Our own studies have shown that humans vaccinated
with an H5N1 vaccine maintain some of the CD4T cells specific
for the unique H5-HA peptides for at least 5 years and that
they can be recalled (49). This argues that if attrition does
occur in humans, due to failure to boost, it is not complete
within this time frame. Also, the impact of competition among
CD4T cell responses that likely occurs during complex immune
responses, such as that induced by infection and vaccination is
not yet well-understood, particularly during sequential, periodic
confrontations (50, 51).

If intermittent boosting is required, some epitope specificities
may become enriched for over time while others may decay.
Current licensed inactivated vaccines typically contain some

NP and M1, derived from the vaccine donor strain (52),
which may be of sufficient quantity to boost pre-existing
immunity generated by infection. Consequently, many humans
may accumulate CD4T cells specific for the most highly
conserved epitopes within these internal virion proteins. The
broad reactivity of these CD4T cells could allow them to
provide cross-reactive immunity against many influenza strains,
particularly if their functional and lung homing potential induced
by the original infection is maintained. Enrichment of these
specificities over time with vaccination could be beneficial
for the human host. If re-stimulation is required, then it is
possible that unique epitopes in HA and NA proteins from
viruses that are no longer in circulation disappear over time.
Thus, the repertoire might be edited by “pruning” of some
epitope specificities.

In support of the idea that adults may accumulate CD4T cells
specific for highly conserved HA-derived epitopes with age is
a study showing that relative to younger subject, older adults
display higher levels of highly conserved H1-reactive CD4T
cells, localized to epitopes mainly in the HA2 domain (53).
In addition to the positive and negative effects of intermittent
boosting of the CD4T cells by conserved epitopes and losses due
to attrition by neglect, it is also possible that there is loss of some
potential epitope specificities due to the competitive advantage
that memory cells have. Our laboratory has found that in
sequential heterosubtypic infections in mice, CD4T cells specific
for NP epitopes that are conserved between the two viruses
expand preferentially over new HA-derived epitope specificities
present in the second virus (54), likely due to their higher
abundance and greater sensitivity to antigen, both enhanced in
memory T cells. Thus, editing of the CD4T cell repertoire can
depend on the sequence of viruses encountered. Also important
to consider is that because of error prone polymerase in influenza
virus, T cell epitopes in influenza proteins can accrue small
mutations, leading to emergence of variants that may stimulate
only a subset of the memory CD4T cells. Documented evidence
for this is more common with CD8T cells because of the greater
availability of MHC-peptide tetramers and well-defined short
peptides of 8–10 amino acids, allowing easily deduced binding
registers to MHC class I proteins. MHC class II molecules,
in contrast, bind peptides of highly variable length (12–25
amino acids), due to a peptide binding pocket that is open
at both ends and often have poorly delineated MHC binding
registers. In animal models, well-defined variant peptides for
CD4T cells behave as altered peptide ligands, inducing modified
functionality (55–59) or modified T cell receptor usage (60).
An additional potential mechanism responsible for CD4T cell
repertoire editing, particularly after infection, are the possible
negative effects of robust IFN-γ production on priming and
expansion of new CD4T cells. Human influenza-specific CD4T
cells in adults produce abundant IFN-γ (17, 18, 53, 61, 62)
perhaps reflecting their original priming by infection. If these
cells are recruited into the response to vaccination, elicitation
of new CD4T cell epitope specificities could be dampened via
a complex network of suppression initiated by IFN-γ (10, 63,
64). It is known that T cell primed by infection can establish
long-term memory in the respiratory tract (27, 65, 66), which
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FIGURE 1 | Human exposure to influenza viral antigens. (A) Shown are the seasonal influenza strains that have circulating since the first H1N1 virus was isolated in

1933 (45–47). At times, there has been only a single strain documented to be circulating, such as H1N1 from 1933 to 1957, after which H2N2 was circulating for

approximately a decade. Influenza B was identified in approximately 1940 and has been co-circulating since, in different lineages (Victoria and Yamagata). Influenza

H3N2 reappeared in 1968 and H1N1 began to recirculate with H3N2 in 1977. The H1N1 “seasonal” virus was replaced in 2009 with the novel pandemic “swine

origin” virus which has dominated with H3N2 and influenza B in the last decade. (B) The human immune system encounters influenza antigens intermittently through

both infection and vaccination, depicted by the colored influenza virions indicated in (A), and in syringes, respectively. Seasonal influenza vaccines, shown in multiple

colors, contain HA derived from each circulating strain, while pandemic vaccine formulations contain a single HA. Persons over 65 years of age, indicated in B, have

had decades of exposure to distinct H1N1, H2N2, H3N2, and Influenza B isolates via infection, but limited exposure to vaccination until later in life, when we expect

they would have already accumulated a diverse CD4T cell repertoire. Persons 15–65 years of age have likely encountered diverse viral strains via infection, and

depending on age, have likely had intermittent vaccinations. In contrast to older age group, the youngest age cohort (<15 years old), may have had their first

encounter with influenza derived antigens, especially HA, in the form of a prime-boost immunization. Thus, we predict that older adults would have a CD4T cell

repertoire with diverse antigen specificity and functional potential that was largely generated by infection, while younger individuals may have CD4 repertoire that is

enriched in HA-specific cells and generated largely by vaccination and perhaps boosted periodically by mild infections. The specificity and function of the circulating

memory populations in adults will depend on the factors discussed in the text.

endows them with the capacity for rapid protective responses
to infection. It is possible that infection also seeds T cells in
the periphery that preferentially return to the lung upon a
secondary infection, based on their dominant Th1 phenotype
and associated chemokine receptors (31) or priming via a
lung draining antigen presenting cells after infection (67). Such
infection-primed CD4T cells may have priority for persistence
as they were generated in the context of a robust inflammatory
response and activation of many cells in the innate compartment.

ESSENTIAL STUDIES TO RESOLVE THE
IMPACT OF CD4T CELL IMPRINTING AND
EDITING IN THE INFLUENZA SPECIFIC
CD4T CELL REPERTOIRE

Resolution of the mechanisms that might underlie imprinting
and editing of the CD4T cell response is exciting to consider.
First, and probably most informative, are longitudinal cohort
studies that track the evolving immune response to infection and
vaccination from early childhood to adulthood, where immune
confrontations could be precisely monitored and documented
(68). The best design would encompass both unvaccinated

subjects, who will likely be primed first by infection and perhaps
sequentially with different virus strains, and vaccinated subjects,
who may have their first encounter with inactivated vaccines.
Also critical in identifying factors that control imprinting will
be improvements in approaches that allow low abundance
human CD4T cells, specific for single or selected epitopes from
vaccines or viruses, to be quantified and characterized in these
longitudinal studies. With refinement of these approaches, the
functional fate and persistence of elicited CD4T cells can be
evaluated. For example, use of selected HLA-peptide tetramers
coupled with either single cell sequencing or multiparameter
flow cytometry would be extremely valuable. Finally, because of
the potential of heterologous immunity—immunity generated by
unrelated pathogens—to play a role in T cell responses (69, 70),
it would be valuable to begin to develop methods to identify
the array of pathogens and vaccines that an individual has been

exposed to that may have shaped their existing T cell repertoire,

an option that is feasible with carefully monitored cohorts. If

immunological imprinting is unique to early childhood infection,

then it is possible that some vaccine-specific responses in
adults are drawn from heterologous infections established in
childhood and then boosted by vaccination. This CD4T cell
repertoire may be distinct in several ways. First, the responses
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to vaccination might contribute to protection or lung pathology,
depending on the effector phenotype elicited by the first infection
(71, 72). Second, the cross- reactive response may have a
narrowed breadth in TcR sequence, which might possess more
limited efficacy and later cross-reactivity to variant influenza
strains (70). With the help of advances in computational
studies and data science, it may be possible to identify
predictable events confronting the immune system that perturb
and ultimately control the repertoire of CD4T cells specific
for influenza.

THE POSSIBILITY OF ELIMINATING THE
“ONE SIZE FITS ALL” VACCINE STRATEGY

Currently, licensed vaccines are largely designed via a
single platform with a limited and focused goal. Inactivated
vaccines introduce HA from each circulating virus strain via
intramuscular injection with the goal of eliciting neutralizing
antibodies to the circulating influenza strains. The intranasal
platform of Flumist, designed to provide more local and
cellular immunity in the respiratory tract (73), has had uneven
performance and appears to be most effective in young children
(74). There have also been many recent initiatives to design
vaccines that provide broadly protective immunity (75–80).
With our increasing appreciation of the complexity and
complementary nature of protective immunity to influenza,
and specifically the multitude of functions that CD4T cells play
(27, 51, 81), there is likely to be increased focus on development
of vaccines that prime or replenish particular specificities and
functionalities. For example, if early-life exposures to influenza
do effectively imprint the specificity and function of CD4T cells,
vaccines that establish the most robust and diverse repertoire of

T cells may be most critical for infants and young children. In
this regard, it is interesting to consider the potential consequence
of widespread influenza vaccination beginning in infants. If
childhood exposure is uniquely capable of imprinting specificity
and functionality the immune system, then these early exposures
to influenza primarily through vaccination might prime a
limited CD4 repertoire. This repertoire could be enriched
in HA reactivity Additionally, these CD4T cells primed at
peripheral sites without innate activators may have less lung
homing potential and polyfunctionality and may instead be
enriched for IL-2 or other Th2 biased responses, which are more
typical of neonates (82). Conversely if adults who have received
primarily inactivated, HA enriched vaccines are deficient in
broadly reactive CD4T cells, and are lacking established tissue
resident memory cells, they may benefit from vaccine platforms
that boost local immunity in the respiratory tract reactive with
highly conserved proteins such as NP and M1. Alternate vaccine
strategies for different individuals will require more sensitive and
accurate approaches to define the components of the influenza
specific immune repertoire that are deficient in the human host.
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