115 research outputs found
GPU implementation of Krylov solvers for block-tridiagonal eigenvalue problems
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-32149-3_18In an eigenvalue problem defined by one or two matrices with block-tridiagonal structure, if only a few eigenpairs are required it is interesting to consider iterative methods based on Krylov subspaces, even if matrix blocks are dense. In this context, using the GPU for the associated dense linear algebra may provide high performance. We analyze this in an implementation done in the context of SLEPc, the Scalable Library for Eigenvalue Problem Computations. In the case of a generalized eigenproblem or when interior eigenvalues are computed with shift-and-invert, the main computational kernel is the solution of linear systems with a block-tridiagonal matrix. We explore possible implementations of this operation on the GPU, including a block cyclic reduction algorithm.This work was partially supported by the Spanish Ministry of Economy and Competitiveness under grant TIN2013-41049-P. Alejandro Lamas was supported by the Spanish Ministry of Education, Culture and Sport through grant FPU13-06655.Lamas Daviña, A.; Román Moltó, JE. (2016). GPU implementation of Krylov solvers for block-tridiagonal eigenvalue problems. En Parallel Processing and Applied Mathematics. Springer. 182-191. https://doi.org/10.1007%2F978-3-319-32149-3_18S182191Baghapour, B., Esfahanian, V., Torabzadeh, M., Darian, H.M.: A discontinuous Galerkin method with block cyclic reduction solver for simulating compressible flows on GPUs. Int. J. Comput. Math. 92(1), 110–131 (2014)Bientinesi, P., Igual, F.D., Kressner, D., Petschow, M., Quintana-OrtÃ, E.S.: Condensed forms for the symmetric eigenvalue problem on multi-threaded architectures. Concur. Comput. Pract. Exp. 23, 694–707 (2011)Haidar, A., Ltaief, H., Dongarra, J.: Toward a high performance tile divide and conquer algorithm for the dense symmetric eigenvalue problem. SIAM J. Sci. Comput. 34(6), C249–C274 (2012)Heller, D.: Some aspects of the cyclic reduction algorithm for block tridiagonal linear systems. SIAM J. Numer. Anal. 13(4), 484–496 (1976)Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)Hirshman, S.P., Perumalla, K.S., Lynch, V.E., Sanchez, R.: BCYCLIC: a parallel block tridiagonal matrix cyclic solver. J. Comput. Phys. 229(18), 6392–6404 (2010)Minden, V., Smith, B., Knepley, M.G.: Preliminary implementation of PETSc using GPUs. In: Yuen, D.A., Wang, L., Chi, X., Johnsson, L., Ge, W., Shi, Y. (eds.) GPU Solutions to Multi-scale Problems in Science and Engineering. Lecture Notes in Earth System Sciences, pp. 131–140. Springer, Heidelberg (2013)NVIDIA: CUBLAS Library V7.0. Technical report, DU-06702-001 v7.0, NVIDIA Corporation (2015)Park, A.J., Perumalla, K.S.: Efficient heterogeneous execution on large multicore and accelerator platforms: case study using a block tridiagonal solver. J. Parallel and Distrib. Comput. 73(12), 1578–1591 (2013)Reguly, I., Giles, M.: Efficient sparse matrix-vector multiplication on cache-based GPUs. In: Innovative Parallel Computing (InPar), pp. 1–12 (2012)Roman, J.E., Vasconcelos, P.B.: Harnessing GPU power from high-level libraries: eigenvalues of integral operators with SLEPc. In: International Conference on Computational Science. Procedia Computer Science, vol. 18, pp. 2591–2594. Elsevier (2013)Seal, S.K., Perumalla, K.S., Hirshman, S.P.: Revisiting parallel cyclic reduction and parallel prefix-based algorithms for block tridiagonal systems of equations. J. Parallel Distrib. Comput. 73(2), 273–280 (2013)Stewart, G.W.: A Krylov-Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23(3), 601–614 (2001)Tomov, S., Nath, R., Dongarra, J.: Accelerating the reduction to upper Hessenberg, tridiagonal, and bidiagonal forms through hybrid GPU-based computing. Parallel Comput. 36(12), 645–654 (2010)Vomel, C., Tomov, S., Dongarra, J.: Divide and conquer on hybrid GPU-accelerated multicore systems. SIAM J. Sci. Comput. 34(2), C70–C82 (2012)Zhang, Y., Cohen, J., Owens, J.D.: Fast tridiagonal solvers on the GPU. In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. PPopp 2010, pp. 127–136 (2010
Evaluation of the current knowledge limitations in breast cancer research: a gap analysis
BACKGROUND
A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients.
METHODS
Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action.
RESULTS
Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds).
CONCLUSION
Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care
Transcriptional analysis of the bovine herpesvirus 1 Cooper isolate
Blot hybridization analysis of infected bovine herpesvirus 1 (BHV-1) cellular RNA isolated at various times post infection and after treatment with specific metabolic inhibitors was used to characterize transcription of the BHV-1 Cooper isolate. Synthesis of BHV-1 RNA was detected as early as 3 h post infection and reached a maximum at six to eight hours post infection. The most transcriptionally active area of the genome was between map units 0.110 to 0.195, within the Hin dIII I fragment. From the entire genome a total of 59 transcripts ranging in size from approximately 0.6 to 10 kilobases were characterized as belonging to one of three distinct classes. Using the protein synthesis inhibitor cycloheximide, three immediate-early transcripts were identified as originating from the internal inverted repeat region between map units 0.734 and 0.842, corresponding to the Hin dIII D fragment. Using phosphonoacetic acid to prevent virus DNA synthesis by inhibition of the BHV-1 DNA polymerase, 28 early transcripts were recognized. The remaining 28 transcripts, classified as late RNA, were detected without the use of metabolic inhibitors at 6 to 8 h post infection. Transcription of early and late RNA was not restricted to any specific area of the genome. Eighty percent of the transcripts from both the Hin dIII A fragment, between map units 0.381 to 0.537 within the unique long segment, and the Hin dIII K fragment, between map units 0.840 to 0.907 of the unique short segment, were designated as belonging to the early class.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41672/1/705_2005_Article_BF01316744.pd
Abnormalities of White Matter Microstructure in Unmedicated Obsessive-Compulsive Disorder and Changes after Medication
BACKGROUND: Abnormalities of myelin integrity have been reported in obsessive-compulsive disorder (OCD) using multi-parameter maps of diffusion tensor imaging (DTI). However, it was still unknown to what degree these abnormalities might be affected by pharmacological treatment. OBJECTIVE: To investigate whether the abnormalities of white matter microstructure including myelin integrity exist in OCD and whether they are affected by medication. METHODOLOGY AND PRINCIPAL FINDINGS: Parameter maps of DTI, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD), were acquired from 27 unmedicated OCD patients (including 13 drug-naïve individuals) and 23 healthy controls. Voxel-based analysis was then performed to detect regions with significant group difference. We compared the DTI-derived parameters of 15 patients before and after 12-week Selective Serotonin Reuptake Inhibitor (SSRI) therapies. Significant differences of DTI-derived parameters were observed between OCD and healthy groups in multiple structures, mainly within the fronto-striato-thalamo-cortical loop. An increased RD in combination with no change in AD among OCD patients was found in the left medial superior frontal gyrus, temporo-parietal lobe, occipital lobe, striatum, insula and right midbrain. There was no statistical difference in DTI-derived parameters between drug-naive and previously medicated OCD patients. After being medicated, OCD patients showed a reduction in RD of the left striatum and right midbrain, and in MD of the right midbrain. CONCLUSION: Our preliminary findings suggest that abnormalities of white matter microstructure, particularly in terms of myelin integrity, are primarily located within the fronto-striato-thalamo-cortical circuit of individuals with OCD. Some abnormalities may be partly reversed by SSRI treatment
A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs) exhibits similar aggressive phenotype to the human disease
<p>Abstract</p> <p>Background</p> <p>Triple-negative breast cancer (TNBC) exhibit characteristics quite distinct from other kinds of breast cancer, presenting as an aggressive disease--recurring and metastasizing more often than other kinds of breast cancer, without tumor-specific treatment options and accounts for 15% of all types of breast cancer with higher percentages in premenopausal African-American and Hispanic women. The reason for this aggressive phenotype is currently the focus of intensive research. However, progress is hampered by the lack of suitable TNBC cell model systems.</p> <p>Methods</p> <p>To understand the mechanistic basis for the aggressiveness of TNBC, we produced a stable TNBC cell line by sorting for 4T1 cells that do not express the estrogen receptor (ER), progesterone receptor (PgR) or the gene for human epidermal growth factor receptor 2 (HER2). As a control, we produced a stable triple-positive breast cancer (TPBC) cell line by transfecting 4T1 cells with rat HER2, ER and PgR genes and sorted for cells with high expression of ER and PgR by flow cytometry and high expression of the HER2 gene by Western blot analysis.</p> <p>Results</p> <p>We isolated tumor-initiating cells (TICs) by sorting for CD24<sup>+</sup>/CD44<sup>high</sup>/ALDH1<sup>+ </sup>cells from TNBC (TNBC-TICs) and TPBC (TPBC-TICs) stable cell lines. Limiting dilution transplantation experiments revealed that CD24<sup>+</sup>/CD44<sup>high</sup>/ALDH1<sup>+ </sup>cells derived from TNBC (TNBC-TICs) and TPBC (TPBC-TICs) were significantly more effective at repopulating the mammary glands of naïve female BALB/c mice than CD24<sup>-</sup>/CD44<sup>-</sup>/ALDH1<sup>- </sup>cells. Implantation of the TNBC-TICs resulted in significantly larger tumors, which metastasized to the lungs to a significantly greater extent than TNBC, TPBC-TICs, TPBC or parental 4T1 cells. We further demonstrated that the increased aggressiveness of TNBC-TICs correlates with the presence of high levels of mouse twenty-five kDa heat shock protein (Hsp25/mouse HspB1) and seventy-two kDa heat shock protein (Hsp72/HspA1A).</p> <p>Conclusions</p> <p>Taken together, we have developed a TNBC-TICs model system based on the 4T1 cells which is a very useful metastasis model with the advantage of being able to be transplanted into immune competent recipients. Our data demonstrates that the TNBC-TICs model system could be a useful tool for studies on the pathogenesis and therapeutic treatment for TNBC.</p
A two-stage association study identifies methyl-CpG-binding domain protein 2 gene polymorphisms as candidates for breast cancer susceptibility
Genome-wide association studies for breast cancer have identified over 40 single-nucleotide polymorphisms (SNPs), a subset of which remains statistically significant after genome-wide correction. Improved strategies for mining of genome-wide association data have been suggested to address heritable component of genetic risk in breast cancer. In this study, we attempted a two-stage association design using markers from a genome-wide study (stage 1, Affymetrix Human SNP 6.0 array, cases=302, controls=321). We restricted our analysis to DNA repair/modifications/metabolism pathway related gene polymorphisms for their obvious role in carcinogenesis in general and for their known protein–protein interactions vis-à -vis, potential epistatic effects. We selected 22 SNPs based on linkage disequilibrium patterns and high statistical significance. Genotyping assays in an independent replication study of 1178 cases and 1314 controls were attempted using Sequenom iPLEX Gold platform (stage 2). Six SNPs (rs8094493, rs4041245, rs7614, rs13250873, rs1556459 and rs2297381) showed consistent and statistically significant associations with breast cancer risk in both stages, with allelic odds ratios (and P-values) of 0.85 (0.0021), 0.86 (0.0026), 0.86 (0.0041), 1.17 (0.0043), 1.20 (0.0103) and 1.13 (0.0154), respectively, in combined analysis (N=3115). Of these, three polymorphisms were located in methyl-CpG-binding domain protein 2 gene regions and were in strong linkage disequilibrium. The remaining three SNPs were in proximity to RAD21 homolog (S. pombe), O-6-methylguanine-DNA methyltransferase and RNA polymerase II-associated protein 1. The identified markers may be relevant to breast cancer susceptibility in populations if these findings are confirmed in independent cohorts
Screening and association testing of common coding variation in steroid hormone receptor co-activator and co-repressor genes in relation to breast cancer risk: the Multiethnic Cohort
<p>Abstract</p> <p>Background</p> <p>Only a limited number of studies have performed comprehensive investigations of coding variation in relation to breast cancer risk. Given the established role of estrogens in breast cancer, we hypothesized that coding variation in steroid receptor coactivator and corepressor genes may alter inter-individual response to estrogen and serve as markers of breast cancer risk.</p> <p>Methods</p> <p>We sequenced the coding exons of 17 genes (<it>EP300, CCND1, NME1, NCOA1, NCOA2, NCOA3, SMARCA4, SMARCA2, CARM1, FOXA1, MPG, NCOR1, NCOR2, CALCOCO1, PRMT1, PPARBP </it>and <it>CREBBP</it>) suggested to influence transcriptional activation by steroid hormone receptors in a multiethnic panel of women with advanced breast cancer (n = 95): African Americans, Latinos, Japanese, Native Hawaiians and European Americans. Association testing of validated coding variants was conducted in a breast cancer case-control study (1,612 invasive cases and 1,961 controls) nested in the Multiethnic Cohort. We used logistic regression to estimate odds ratios for allelic effects in ethnic-pooled analyses as well as in subgroups defined by disease stage and steroid hormone receptor status. We also investigated effect modification by established breast cancer risk factors that are associated with steroid hormone exposure.</p> <p>Results</p> <p>We identified 45 coding variants with frequencies ≥ 1% in any one ethnic group (43 non-synonymous variants). We observed nominally significant positive associations with two coding variants in ethnic-pooled analyses (<it>NCOR2</it>: His52Arg, OR = 1.79; 95% CI, 1.05–3.05; <it>CALCOCO1</it>: Arg12His, OR = 2.29; 95% CI, 1.00–5.26). A small number of variants were associated with risk in disease subgroup analyses and we observed no strong evidence of effect modification by breast cancer risk factors. Based on the large number of statistical tests conducted in this study, the nominally significant associations that we observed may be due to chance, and will need to be confirmed in other studies.</p> <p>Conclusion</p> <p>Our findings suggest that common coding variation in these candidate genes do not make a substantial contribution to breast cancer risk in the general population. Cataloging and testing of coding variants in coactivator and corepressor genes should continue and may serve as a valuable resource for investigations of other hormone-related phenotypes, such as inter-individual response to hormonal therapies used for cancer treatment and prevention.</p
Endothelial Differentiation of Human Stem Cells Seeded onto Electrospun Polyhydroxybutyrate/Polyhydroxybutyrate-Co-Hydroxyvalerate Fiber Mesh
Tissue engineering is based on the association of cultured cells with structural matrices and the incorporation of signaling molecules for inducing tissue regeneration. Despite its enormous potential, tissue engineering faces a major challenge concerning the maintenance of cell viability after the implantation of the constructs. The lack of a functional vasculature within the implant compromises the delivery of nutrients to and removal of metabolites from the cells, which can lead to implant failure. In this sense, our investigation aims to develop a new strategy for enhancing vascularization in tissue engineering constructs. This study's aim was to establish a culture of human adipose tissue-derived stem cells (hASCs) to evaluate the biocompatibility of electrospun fiber mesh made of polyhydroxybutyrate (PHB) and its copolymer poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV) and to promote the differentiation of hASCs into the endothelial lineage. Fiber mesh was produced by blending 30% PHB with 70% PHB-HV and its physical characterization was conducted using scanning electron microscopy analysis (SEM). Using electrospinning, fiber mesh was obtained with diameters ranging 300 nm to 1.3 µm. To assess the biological performance, hASCs were extracted, cultured, characterized by flow cytometry, expanded and seeded onto electrospun PHB/PHB-HV fiber mesh. Various aspects of the cells were analyzed in vitro using SEM, MTT assay and Calcein-AM staining. The in vitro evaluation demonstrated good adhesion and a normal morphology of the hASCs. After 7, 14 and 21 days of seeding hASCs onto electrospun PHB/PHB-HV fiber mesh, the cells remained viable and proliferative. Moreover, when cultured with endothelial differentiation medium (i.e., medium containing VEGF and bFGF), the hASCs expressed endothelial markers such as VE-Cadherin and the vWF factor. Therefore, the electrospun PHB/PHB-HV fiber mesh appears to be a suitable material that can be used in combination with endothelial-differentiated cells to improve vascularization in engineered bone tissues
- …