513 research outputs found

    Function of COP9 Signalosome in Regulation of Mouse Oocytes Meiosis by Regulating MPF Activity and Securing Degradation

    Get PDF
    The COP9 (constitutive photomorphogenic) signalosome (CSN), composed of eight subunits, is a highly conserved protein complex that regulates processes such as cell cycle progression and kinase signalling. Previously, we found the expression of the COP9 constitutive photomorphogenic homolog subunit 3 (CSN3) and subunit 5 (CSN5) changes as oocytes mature for the first time, and there is no report regarding roles of COP9 in the mammalian oocytes. Therefore, in the present study, we examined the effects of RNA interference (RNAi)-mediated transient knockdown of each subunit on the meiotic cell cycle in mice oocytes. Following knockdown of either CSN3 or CSN5, oocytes failed to complete meiosis I. These arrested oocytes exhibited a disrupted meiotic spindle and misarranged chromosomes. Moreover, down-regulation of each subunit disrupted the activity of maturation-promoting factor (MPF) and concurrently reduced degradation of the anaphase-promoting complex/cyclosome (APC/C) substrates Cyclin B1 and Securin. Our data suggest that the CSN3 and CSN5 are involved in oocyte meiosis by regulating degradation of Cyclin B1 and Securin via APC/C

    The biological significance of non-enzymatic reaction of menadione with plasma thiols: enhancement of menadione-induced cytotoxicity to platelets by the presence of blood plasma

    Get PDF
    AbstractTo test the hypothesis that the non-enzymatic reaction of quinones with thiols in plasma can generate reactive oxygens (ROS), thereby leading to potentiated cellular toxicity, we have studied the effect of a representative quinone compound, menadione, on plasma isolated from rats. The experimental results are as follows: (1) menadione generated ROS via non-enzymatic reaction with protein thiols in plasma; (2) the presence of plasma increased menadione-induced cytotoxicity to platelets; (3) pretreatment of plasma with a thiol-depleting agent significantly suppressed menadione-induced ROS and cytotoxicity. These results suggest that the non-enzymatic reaction of menadione with plasma thiols could be an important process in quinone-induced cellular toxicity

    Anti-allergic and anti-inflammatory effects of butanol extract from Arctium Lappa L

    Get PDF
    Background: Atopic dermatitis is a chronic, allergic inflammatory skin disease that is accompanied by markedly increased levels of inflammatory cells, including eosinophils, mast cells, and T cells. Arctium lappa L. is a traditional medicine in Asia. This study examined whether a butanol extract of A. lappa (ALBE) had previously unreported anti-allergic or anti-inflammatory effects.Methods: This study examined the effect of ALBE on the release of ??-hexosaminidase in antigen-stimulated-RBL-2H3 cells. We also evaluated the ConA-induced expression of IL-4, IL-5, mitogen-activated protein kinases (MAPKs), and nuclear factor (NF)-??B using RT-PCR, Western blotting, and ELISA in mouse splenocytes after ALBE treatment.Results: We observed significant inhibition of ??-hexosaminidase release in RBL-2H3 cells and suppressed mRNA expression and protein secretion of IL-4 and IL-5 induced by ConA-treated primary murine splenocytes after ALBE treatment. Additionally, ALBE (100 ??g/mL) suppressed not only the transcriptional activation of NF-??B, but also the phosphorylation of MAPKs in ConA-treated primary splenocytes.Conclusions: These results suggest that ALBE inhibits the expression of IL-4 and IL-5 by downregulating MAPKs and NF-??B activation in ConA-treated splenocytes and supports the hypothesis that ALBE may have beneficial effects in the treatment of allergic diseases, including atopic dermatitis. ?? 2011 Sohn et al; licensee BioMed Central Ltd

    Growth differentiation factor 11 locally controls anterior-posterior patterning of the axial skeleton.

    Get PDF
    Growth and differentiation factor 11 (GDF11) is a transforming growth factor β family member that has been identified as the central player of anterior-posterior (A-P) axial skeletal patterning. Mice homozygous for Gdf11 deletion exhibit severe anterior homeotic transformations of the vertebrae and craniofacial defects. During early embryogenesis, Gdf11 is expressed predominantly in the primitive streak and tail bud regions, where new mesodermal cells arise. On the basis of this expression pattern of Gdf11 and the phenotype of Gdf11 mutant mice, it has been suggested that GDF11 acts to specify positional identity along the A-P axis either by local changes in levels of signaling as development proceeds or by acting as a morphogen. To further investigate the mechanism of action of GDF11 in the vertebral specification, we used a Cdx2-Cre transgene to generate mosaic mice in which Gdf11 expression is removed in posterior regions including the tail bud, but not in anterior regions. The skeletal analysis revealed that these mosaic mice display patterning defects limited to posterior regions where Gdf11 expression is deficient, whereas displaying normal skeletal phenotype in anterior regions where Gdf11 is normally expressed. Specifically, the mosaic mice exhibited seven true ribs, a pattern observed in wild-type (wt) mice (vs. 10 true ribs in Gdf11-/- mice), in the anterior axis and nine lumbar vertebrae, a pattern observed in Gdf11 null mice (vs. six lumbar vertebrae in wt mice), in the posterior axis. Our findings suggest that GDF11, rather than globally acting as a morphogen secreted from the tail bud, locally regulates axial vertebral patterning

    A case of malignant hyperthermia during anesthesia induction with sevoflurane -A case report-

    Get PDF
    We experienced a case of malignant hyperthermia (MH) in 6-year-old boy during anesthesia induction for strabismus surgery. It has been generally reported that sevoflurane can induce the delayed onset of MH in the absence of succinylcholine. Our case of MH was elicited after about 2-3 min of sevoflurane administration with N2O, O2 and rocuronium. However, we successfully treated the patient by early recognition of his condition and administering symptomatic treatment and dantrolene

    Electrically Robust Single-Crystalline WTe2 Nanobelts for Nanoscale Electrical Interconnects

    Get PDF
    As the elements of integrated circuits are downsized to the nanoscale, the current Cu-based interconnects are facing limitations due to increased resistivity and decreased current-carrying capacity because of scaling. Here, the bottom-up synthesis of single-crystalline WTe2 nanobelts and low- and high-field electrical characterization of nanoscale interconnect test structures in various ambient conditions are reported. Unlike exfoliated flakes obtained by the top-down approach, the bottom-up growth mode of WTe2 nanobelts allows systemic characterization of the electrical properties of WTe2 single crystals as a function of channel dimensions. Using a 1D heat transport model and a power law, it is determined that the breakdown of WTe2 devices under vacuum and with AlOx capping layer follows an ideal pattern for Joule heating, far from edge scattering. High-field electrical measurements and self-heating modeling demonstrate that the WTe2 nanobelts have a breakdown current density approaching approximate to 100 MA cm(-2), remarkably higher than those of conventional metals and other transition-metal chalcogenides, and sustain the highest electrical power per channel length (approximate to 16.4 W cm(-1)) among the interconnect candidates. The results suggest superior robustness of WTe2 against high-bias sweep and its possible applicability in future nanoelectronics

    AlphaTuning: Quantization-Aware Parameter-Efficient Adaptation of Large-Scale Pre-Trained Language Models

    Full text link
    There are growing interests in adapting large-scale language models using parameter-efficient fine-tuning methods. However, accelerating the model itself and achieving better inference efficiency through model compression has not been thoroughly explored yet. Model compression could provide the benefits of reducing memory footprints, enabling low-precision computations, and ultimately achieving cost-effective inference. To combine parameter-efficient adaptation and model compression, we propose AlphaTuning consisting of post-training quantization of the pre-trained language model and fine-tuning only some parts of quantized parameters for a target task. Specifically, AlphaTuning works by employing binary-coding quantization, which factorizes the full-precision parameters into binary parameters and a separate set of scaling factors. During the adaptation phase, the binary values are frozen for all tasks, while the scaling factors are fine-tuned for the downstream task. We demonstrate that AlphaTuning, when applied to GPT-2 and OPT, performs competitively with full fine-tuning on a variety of downstream tasks while achieving >10x compression ratio under 4-bit quantization and >1,000x reduction in the number of trainable parameters.Comment: Findings of EMNLP 202
    corecore