289 research outputs found

    Pharmacological activation of endogenous protective pathways against oxidative stress under conditions of sepsis

    Get PDF
    Funding The study was funded entirely by institutional funds.Peer reviewedPostprin

    The multi-thermal and multi-stranded nature of coronal rain

    Full text link
    In this work, we analyse coordinated observations spanning chromospheric, TR and coronal temperatures at very high resolution which reveal essential characteristics of thermally unstable plasmas. Coronal rain is found to be a highly multi-thermal phenomenon with a high degree of co-spatiality in the multi-wavelength emission. EUV darkening and quasi-periodic intensity variations are found to be strongly correlated to coronal rain showers. Progressive cooling of coronal rain is observed, leading to a height dependence of the emission. A fast-slow two-step catastrophic cooling progression is found, which may reflect the transition to optically thick plasma states. The intermittent and clumpy appearance of coronal rain at coronal heights becomes more continuous and persistent at chromospheric heights just before impact, mainly due to a funnel effect from the observed expansion of the magnetic field. Strong density inhomogeneities on spatial scales of 0.2"-0.5" are found, in which TR to chromospheric temperature transition occurs at the lowest detectable scales. The shape of the distribution of coronal rain widths is found to be independent of temperature with peaks close to the resolution limit of each telescope, ranging from 0.2" to 0.8". However we find a sharp increase of clump numbers at the coolest wavelengths and especially at higher resolution, suggesting that the bulk of the rain distribution remains undetected. Rain clumps appear organised in strands in both chromospheric and TR temperatures, suggesting an important role of thermal instability in the shaping of fundamental loop substructure. We further find structure reminiscent of the MHD thermal mode. Rain core densities are estimated to vary between 2x10^{10} cm^{-3} and 2.5x10^{11} cm^{-3} leading to significant downward mass fluxes per loop of 1-5x10^{9} g s^{-1}, suggesting a major role in the chromosphere-corona mass cycle.Comment: Abstract is only short version. See paper for full. Countless pages, figures (and movies, but not included here). Accepted for publication in the Astrophysical Journa

    The multi-thermal and multi-stranded nature of coronal rain

    Get PDF
    We analyze coordinated observations of coronal rain in loops, spanning chromospheric, transition region (TR), and coronal temperatures with sub-arcsecond spatial resolution. Coronal rain is found to be a highly multithermal phenomenon with a high degree of co-spatiality in the multi-wavelength emission. EUV darkening and quasi-periodic intensity variations are found to be strongly correlated with coronal rain showers. Progressive cooling of coronal rain is observed, leading to a height dependence of the emission. A fast-slow two-step catastrophic cooling progression is found, which may reflect the transition to optically thick plasma states. The intermittent and clumpy appearance of coronal rain at coronal heights becomes more continuous and persistent at chromospheric heights just before impact, mainly due to a funnel effect from the observed expansion of the magnetic field. Strong density inhomogeneities of 0.″2-0.″5 are found, in which a transition from temperatures of 105 to 104 K occurs. The 0.″2-0.″8 width of the distribution of coronal rain is found to be independent of temperature. The sharp increase in the number of clumps at the coolest temperatures, especially at higher resolution, suggests that the bulk distribution of the rain remains undetected. Rain clumps appear organized in strands in both chromospheric and TR temperatures. We further find structure reminiscent of the magnetohydrodynamic (MHD) thermal mode (also known as entropy mode), thereby suggesting an important role of thermal instability in shaping the basic loop substructure. Rain core densities are estimated to vary between 2 × 1010 and 2.5 × 1011cm−3, leading to significant downward mass fluxes per loop of 1–5 × 109 g s−1, thus suggesting a major role in the chromosphere-corona mass cycle.Publisher PDFPeer reviewe

    Spatial resolution and refractive index contrast of resonant photonic crystal surfaces for biosensing

    Get PDF
    By depositing a resolution test pattern on top of a Si3N4 photonic crystal resonant surface, we have measured the dependence of spatial resolution on refractive index contrast \Delta n. Our experimental results and finite-difference time-domain (FDTD) simulations at different refractive index contrasts show that the spatial resolution of our device reduces with reduced contrast, which is an important consideration in biosensing, where the contrast may be of order 10{-2} . We also compare 1-D and 2-D gratings, taking into account different incidence polarizations, leading to a better understanding of the excitation and propagation of the resonant modes in these structures, as well as how this contributes to the spatial resolution. At \Delta n = 0.077, we observe resolutions of 2 and 6 \mu\hbox{m} parallel to and perpendicular to the grooves of a 1-D grating, respectively, and show that for polarized illumination of a 2-D grating, resolution remains asymmetrical. Illumination of a 2-D grating at 45 ^{\circ} results in symmetric resolution. At very low index contrast, the resolution worsens dramatically, particularly for \Delta n\ <\ 0.01, where we observe a resolution exceeding 10 \mu\hbox{m} for our device. In addition, we measure a reduction in the resonance linewidth as the index contrast becomes lower, corresponding to a longer resonant mode propagation length in the structure and contributing to the change in spatial resolution

    Off-limb (spicule) DEM distribution from SoHO/SUMER observations

    Full text link
    In the present work we derive a Differential Emission Measure (DEM) dis- tribution from a region dominated by spicules. We use spectral data from the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer on-board the Solar Heliospheric Observatory (SoHO) covering the entire SUMER wavelength range taken off-limb in the Northern polar coronal hole to construct this DEM distribution using the CHIANTI atomic database. This distribution is then used to study the thermal properties of the emission contributing to the 171 {\AA} channel in the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO). From our off-limb DEM we found that the radiance in the AIA 171 {\AA} channel is dominated by emission from the Fe ix 171.07 {\AA} line and has sparingly little contribution from other lines. The product of the Fe ix 171.07 {\AA} line contribution function with the off-limb DEM was found to have a maximum at logTmax (K) = 5.8 indicating that during spicule observations the emission in this line comes from plasma at transition region temperatures rather than coronal. For comparison, the same product with a quiet Sun and prominence DEM were found to have a maximum at logT max (K) = 5.9 and logTmax (K) = 5.7, respectively. We point out that the interpretation of data obtained from the AIA 171 {\AA} filter should be done with foreknowledge of the thermal nature of the observed phenomenon. For example, with an off-limb DEM we find that only 3.6% of the plasma is above a million degrees, whereas using a quiet Sun DEM, this contribution rises to 15%.Comment: 12 pages, 6 figures accepted by Solar Physic

    Hundredfold Enhancement of Light Emission via Defect Control in Monolayer Transition-Metal Dichalcogenides

    Get PDF
    Two dimensional (2D) transition-metal dichalcogenide (TMD) based semiconductors have generated intense recent interest due to their novel optical and electronic properties, and potential for applications. In this work, we characterize the atomic and electronic nature of intrinsic point defects found in single crystals of these materials synthesized by two different methods - chemical vapor transport and self-flux growth. Using a combination of scanning tunneling microscopy (STM) and scanning transmission electron microscopy (STEM), we show that the two major intrinsic defects in these materials are metal vacancies and chalcogen antisites. We show that by control of the synthetic conditions, we can reduce the defect concentration from above 1013/cm210^{13} /cm^2 to below 1011/cm210^{11} /cm^2. Because these point defects act as centers for non-radiative recombination of excitons, this improvement in material quality leads to a hundred-fold increase in the radiative recombination efficiency

    Velocity Response of the Observed Explosive Events in the Lower Solar Atmosphere: I. Formation of the Flowing Cool Loop System

    Get PDF
    We observe plasma flows in cool loops using the Slit-Jaw Imager (SJI) onboard the Interface Region Imaging Spectrometer (IRIS). Huang et al. (2015) observed unusually broadened Si IV 1403 angstrom line profiles at the footpoints of such loops that were attributed to signatures of explosive events (EEs). We have chosen one such uni-directional flowing cool loop system observed by IRIS where one of the footpoints is associated with significantly broadened Si IV line profiles. The line profile broadening indirectly indicates the occurrence of numerous EEs below the transition region (TR), while it directly infers a large velocity enhancement /perturbation further causing the plasma flows in the observed loop system. The observed features are implemented in a model atmosphere in which a low-lying bi-polar magnetic field system is perturbed in the chromosphere by a velocity pulse with a maximum amplitude of 200 km/s. The data-driven 2-D numerical simulation shows that the plasma motions evolve in a similar manner as observed by IRIS in the form of flowing plasma filling the skeleton of a cool loop system. We compare the spatio-temporal evolution of the cool loop system in the framework of our model with the observations, and conclude that their formation is mostly associated with the velocity response of the transient energy release above their footpoints in the chromosphere/TR. Our observations and modeling results suggest that the velocity responses most likely associated to the EEs could be one of the main candidates for the dynamics and energetics of the flowing cool loop systems in the lower solar atmosphere.Comment: In Press; The Astrophysical Journal; 14 Pages; 9 Figure

    Solar science with the Atacama Large Millimeter/submillimeter Array - A new view of our Sun

    Get PDF
    The Atacama Large Millimeter/submillimeter Array (ALMA) is a new powerful tool for observing the Sun at high spatial, temporal, and spectral resolution. These capabilities can address a broad range of fundamental scientific questions in solar physics. The radiation observed by ALMA originates mostly from the chromosphere - a complex and dynamic region between the photosphere and corona, which plays a crucial role in the transport of energy and matter and, ultimately, the heating of the outer layers of the solar atmosphere. Based on first solar test observations, strategies for regular solar campaigns are currently being developed. State-of-the-art numerical simulations of the solar atmosphere and modeling of instrumental effects can help constrain and optimize future observing modes for ALMA. Here we present a short technical description of ALMA and an overview of past efforts and future possibilities for solar observations at submillimeter and millimeter wavelengths. In addition, selected numerical simulations and observations at other wavelengths demonstrate ALMA's scientific potential for studying the Sun for a large range of science cases.Comment: 73 pages, 21 figures ; Space Science Reviews (accepted December 10th, 2015); accepted versio
    corecore