292 research outputs found
Pharmacological activation of endogenous protective pathways against oxidative stress under conditions of sepsis
Funding The study was funded entirely by institutional funds.Peer reviewedPostprin
The multi-thermal and multi-stranded nature of coronal rain
In this work, we analyse coordinated observations spanning chromospheric, TR
and coronal temperatures at very high resolution which reveal essential
characteristics of thermally unstable plasmas. Coronal rain is found to be a
highly multi-thermal phenomenon with a high degree of co-spatiality in the
multi-wavelength emission. EUV darkening and quasi-periodic intensity
variations are found to be strongly correlated to coronal rain showers.
Progressive cooling of coronal rain is observed, leading to a height dependence
of the emission. A fast-slow two-step catastrophic cooling progression is
found, which may reflect the transition to optically thick plasma states. The
intermittent and clumpy appearance of coronal rain at coronal heights becomes
more continuous and persistent at chromospheric heights just before impact,
mainly due to a funnel effect from the observed expansion of the magnetic
field. Strong density inhomogeneities on spatial scales of 0.2"-0.5" are found,
in which TR to chromospheric temperature transition occurs at the lowest
detectable scales. The shape of the distribution of coronal rain widths is
found to be independent of temperature with peaks close to the resolution limit
of each telescope, ranging from 0.2" to 0.8". However we find a sharp increase
of clump numbers at the coolest wavelengths and especially at higher
resolution, suggesting that the bulk of the rain distribution remains
undetected. Rain clumps appear organised in strands in both chromospheric and
TR temperatures, suggesting an important role of thermal instability in the
shaping of fundamental loop substructure. We further find structure reminiscent
of the MHD thermal mode. Rain core densities are estimated to vary between
2x10^{10} cm^{-3} and 2.5x10^{11} cm^{-3} leading to significant downward mass
fluxes per loop of 1-5x10^{9} g s^{-1}, suggesting a major role in the
chromosphere-corona mass cycle.Comment: Abstract is only short version. See paper for full. Countless pages,
figures (and movies, but not included here). Accepted for publication in the
Astrophysical Journa
The multi-thermal and multi-stranded nature of coronal rain
We analyze coordinated observations of coronal rain in loops, spanning chromospheric, transition region (TR), and coronal temperatures with sub-arcsecond spatial resolution. Coronal rain is found to be a highly multithermal phenomenon with a high degree of co-spatiality in the multi-wavelength emission. EUV darkening and quasi-periodic intensity variations are found to be strongly correlated with coronal rain showers. Progressive cooling of coronal rain is observed, leading to a height dependence of the emission. A fast-slow two-step catastrophic cooling progression is found, which may reflect the transition to optically thick plasma states. The intermittent and clumpy appearance of coronal rain at coronal heights becomes more continuous and persistent at chromospheric heights just before impact, mainly due to a funnel effect from the observed expansion of the magnetic field. Strong density inhomogeneities of 0.″2-0.″5 are found, in which a transition from temperatures of 105 to 104 K occurs. The 0.″2-0.″8 width of the distribution of coronal rain is found to be independent of temperature. The sharp increase in the number of clumps at the coolest temperatures, especially at higher resolution, suggests that the bulk distribution of the rain remains undetected. Rain clumps appear organized in strands in both chromospheric and TR temperatures. We further find structure reminiscent of the magnetohydrodynamic (MHD) thermal mode (also known as entropy mode), thereby suggesting an important role of thermal instability in shaping the basic loop substructure. Rain core densities are estimated to vary between 2 × 1010 and 2.5 × 1011cm−3, leading to significant downward mass fluxes per loop of 1–5 × 109 g s−1, thus suggesting a major role in the chromosphere-corona mass cycle.Publisher PDFPeer reviewe
Spatial resolution and refractive index contrast of resonant photonic crystal surfaces for biosensing
By depositing a resolution test pattern on top of a Si3N4 photonic crystal resonant surface, we have measured the dependence of spatial resolution on refractive index contrast \Delta n. Our experimental results and finite-difference time-domain (FDTD) simulations at different refractive index contrasts show that the spatial resolution of our device reduces with reduced contrast, which is an important consideration in biosensing, where the contrast may be of order 10{-2} . We also compare 1-D and 2-D gratings, taking into account different incidence polarizations, leading to a better understanding of the excitation and propagation of the resonant modes in these structures, as well as how this contributes to the spatial resolution. At \Delta n = 0.077, we observe resolutions of 2 and 6 \mu\hbox{m} parallel to and perpendicular to the grooves of a 1-D grating, respectively, and show that for polarized illumination of a 2-D grating, resolution remains asymmetrical. Illumination of a 2-D grating at 45 ^{\circ} results in symmetric resolution. At very low index contrast, the resolution worsens dramatically, particularly for \Delta n\ <\ 0.01, where we observe a resolution exceeding 10 \mu\hbox{m} for our device. In addition, we measure a reduction in the resonance linewidth as the index contrast becomes lower, corresponding to a longer resonant mode propagation length in the structure and contributing to the change in spatial resolution
Off-limb (spicule) DEM distribution from SoHO/SUMER observations
In the present work we derive a Differential Emission Measure (DEM) dis-
tribution from a region dominated by spicules. We use spectral data from the
Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer
on-board the Solar Heliospheric Observatory (SoHO) covering the entire SUMER
wavelength range taken off-limb in the Northern polar coronal hole to construct
this DEM distribution using the CHIANTI atomic database. This distribution is
then used to study the thermal properties of the emission contributing to the
171 {\AA} channel in the Atmospheric Imaging Assembly (AIA) on-board the Solar
Dynamics Observatory (SDO). From our off-limb DEM we found that the radiance in
the AIA 171 {\AA} channel is dominated by emission from the Fe ix 171.07 {\AA}
line and has sparingly little contribution from other lines. The product of the
Fe ix 171.07 {\AA} line contribution function with the off-limb DEM was found
to have a maximum at logTmax (K) = 5.8 indicating that during spicule
observations the emission in this line comes from plasma at transition region
temperatures rather than coronal. For comparison, the same product with a quiet
Sun and prominence DEM were found to have a maximum at logT max (K) = 5.9 and
logTmax (K) = 5.7, respectively. We point out that the interpretation of data
obtained from the AIA 171 {\AA} filter should be done with foreknowledge of the
thermal nature of the observed phenomenon. For example, with an off-limb DEM we
find that only 3.6% of the plasma is above a million degrees, whereas using a
quiet Sun DEM, this contribution rises to 15%.Comment: 12 pages, 6 figures accepted by Solar Physic
Velocity Response of the Observed Explosive Events in the Lower Solar Atmosphere: I. Formation of the Flowing Cool Loop System
We observe plasma flows in cool loops using the Slit-Jaw Imager (SJI) onboard
the Interface Region Imaging Spectrometer (IRIS). Huang et al. (2015) observed
unusually broadened Si IV 1403 angstrom line profiles at the footpoints of such
loops that were attributed to signatures of explosive events (EEs). We have
chosen one such uni-directional flowing cool loop system observed by IRIS where
one of the footpoints is associated with significantly broadened Si IV line
profiles. The line profile broadening indirectly indicates the occurrence of
numerous EEs below the transition region (TR), while it directly infers a large
velocity enhancement /perturbation further causing the plasma flows in the
observed loop system. The observed features are implemented in a model
atmosphere in which a low-lying bi-polar magnetic field system is perturbed in
the chromosphere by a velocity pulse with a maximum amplitude of 200 km/s. The
data-driven 2-D numerical simulation shows that the plasma motions evolve in a
similar manner as observed by IRIS in the form of flowing plasma filling the
skeleton of a cool loop system. We compare the spatio-temporal evolution of the
cool loop system in the framework of our model with the observations, and
conclude that their formation is mostly associated with the velocity response
of the transient energy release above their footpoints in the chromosphere/TR.
Our observations and modeling results suggest that the velocity responses most
likely associated to the EEs could be one of the main candidates for the
dynamics and energetics of the flowing cool loop systems in the lower solar
atmosphere.Comment: In Press; The Astrophysical Journal; 14 Pages; 9 Figure
Hundredfold Enhancement of Light Emission via Defect Control in Monolayer Transition-Metal Dichalcogenides
Two dimensional (2D) transition-metal dichalcogenide (TMD) based
semiconductors have generated intense recent interest due to their novel
optical and electronic properties, and potential for applications. In this
work, we characterize the atomic and electronic nature of intrinsic point
defects found in single crystals of these materials synthesized by two
different methods - chemical vapor transport and self-flux growth. Using a
combination of scanning tunneling microscopy (STM) and scanning transmission
electron microscopy (STEM), we show that the two major intrinsic defects in
these materials are metal vacancies and chalcogen antisites. We show that by
control of the synthetic conditions, we can reduce the defect concentration
from above to below . Because these point
defects act as centers for non-radiative recombination of excitons, this
improvement in material quality leads to a hundred-fold increase in the
radiative recombination efficiency
Solar science with the Atacama Large Millimeter/submillimeter Array - A new view of our Sun
The Atacama Large Millimeter/submillimeter Array (ALMA) is a new powerful
tool for observing the Sun at high spatial, temporal, and spectral resolution.
These capabilities can address a broad range of fundamental scientific
questions in solar physics. The radiation observed by ALMA originates mostly
from the chromosphere - a complex and dynamic region between the photosphere
and corona, which plays a crucial role in the transport of energy and matter
and, ultimately, the heating of the outer layers of the solar atmosphere. Based
on first solar test observations, strategies for regular solar campaigns are
currently being developed. State-of-the-art numerical simulations of the solar
atmosphere and modeling of instrumental effects can help constrain and optimize
future observing modes for ALMA. Here we present a short technical description
of ALMA and an overview of past efforts and future possibilities for solar
observations at submillimeter and millimeter wavelengths. In addition, selected
numerical simulations and observations at other wavelengths demonstrate ALMA's
scientific potential for studying the Sun for a large range of science cases.Comment: 73 pages, 21 figures ; Space Science Reviews (accepted December 10th,
2015); accepted versio
- …