1,972 research outputs found

    Identification and isolation of insecticidal oxazoles from Pseudomonas spp.

    Get PDF
    Two new and five known oxazoles were identified from two different Pseudomonas strains in addition to the known pyrones pseudopyronine A and B. Labeling experiments confirmed their structures and gave initial evidence for a novel biosynthesis pathway of these natural oxazoles. In order to confirm their structure, they were synthesized, which also allowed tests of their bioactivity. Additionally, the bioactivities of the synthesis intermediates were also investigated revealing interesting biological activities for several compounds despite their overall simple structures

    Molecular Research on Reproductive Toxicity

    Get PDF
    Fertility rates in animals have shown a progressive decrease in recent decades, and reproductive toxicity is considered an important regulatory endpoint in health hazard assessment [...

    Sudden cardiac death in young athletes: Literature review of molecular basis

    Get PDF
    Intense athletic training and competition can rarely result in sudden cardiac death (SCD). Despite the introduction of pre-participation cardiovascular screening, especially among young competitive athletes, sport-related SCD remains a debated issue among medical personnel, sports communities and laypersons alike, and generates significant media attention. The most frequent cause of SCD is a hidden inherited cardiomyopathy, the athletes may not even be aware of. Predictive medicine, by searching the presence of pathogenic alterations in cardiac genes, may be an integrative tool, besides the conventional ones used in cardiology (mainly electro and echocardiogram), to reach a definitive diagnosis in athletes showing signs/symptoms, even borderline, of inherited cardiomyopathy/ channelopathy, and in athletes presenting family history of SCD and/or of hereditary cardiac disease. In this review, we revised the molecular basis of the major cardiac diseases associated to sudden cardiac death and the clinical molecular biology approach that can be used to perform risk assessment at DNA level of sudden cardiac death, contributing to the early implementation of adequate therapy. Alterations can occur in ion channel genes, in genes encoding desmosomal and junctional proteins, sarcomeric and Z-disc proteins, proteins for the cytoskeleton and the nuclear envelope. The advent of next generation sequencing (NGS) technology has provided the means to search for mutations in all these genes, at the same time. Therefore, this molecular approach should be the preferred methodology for the aforementioned purpose

    Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors

    Get PDF
    Mapping and monitoring soil spatial variability is particularly problematic for temporally and spatially dynamic properties such as soil salinity. The tools necessary to address this classic problem only reached maturity within the past 2 decades to enable field- to regional-scale salinity assessment of the root zone, including GPS, GIS, geophysical techniques involving proximal and remote sensors, and a greater understanding of apparent soil electrical conductivity (ECa) and multi- and hyperspectral imagery. The concurrent development and application of these tools have made it possible to map soil salinity across multiple scales, which back in the 1980s was prohibitively expensive and impractical even at field scale. The combination of ECa-directed soil sampling and remote imagery has played a key role in mapping and monitoring soil salinity at large spatial extents with accuracy sufficient for applications ranging from field-scale site-specific management to statewide water allocation management to control salinity within irrigation districts. The objective of this paper is: (i) to present a review of the geophysical and remote imagery techniques used to assess soil salinity variability within the root zone from field to regional scales; (ii) to elucidate gaps in our knowledge and understanding of mapping soil salinity; and (iii) to synthesize existing knowledge to give new insight into the direction soil salinity mapping is heading to benefit policy makers, land resource managers, producers, agriculture consultants, extension specialists, and resource conservation field staff. The review covers the need and justification for mapping and monitoring salinity, basic concepts of soil salinity and its measurement, past geophysical and remote imagery research critical to salinity assessment, current approaches for mapping salinity at different scales, milestones in multi-scale salinity assessment, and future direction of field- to regional-scale salinity assessment

    Robot-assisted Soil Apparent Electrical Conductivity Measurements in Orchards

    Full text link
    Soil apparent electrical conductivity (ECa) is a vital metric in Precision Agriculture and Smart Farming, as it is used for optimal water content management, geological mapping, and yield prediction. Several existing methods seeking to estimate soil electrical conductivity are available, including physical soil sampling, ground sensor installation and monitoring, and the use of sensors that can obtain proximal ECa estimates. However, such methods can be either very laborious and/or too costly for practical use over larger field canopies. Robot-assisted ECa measurements, in contrast, may offer a scalable and cost-effective solution. In this work, we present one such solution that involves a ground mobile robot equipped with a customized and adjustable platform to hold an Electromagnetic Induction (EMI) sensor to perform semi-autonomous and on-demand ECa measurements under various field conditions. The platform is designed to be easily re-configurable in terms of sensor placement; results from testing for traversability and robot-to-sensor interference across multiple case studies help establish appropriate tradeoffs for sensor placement. Further, a developed simulation software package enables rapid and accessible estimation of terrain traversability in relation to desired EMI sensor placement. Extensive experimental evaluation across different fields demonstrates that the obtained robot-assisted ECa measurements are of high linearity compared with the ground truth (data collected manually by a handheld EMI sensor) by scoring more than 90%90\% in Pearson correlation coefficient in both plot measurements and estimated ECa maps generated by kriging interpolation. The proposed robotic solution supports autonomous behavior development in the field since it utilizes the ROS navigation stack along with the RTK GNSS positioning data and features various ranging sensors.Comment: 15 pages, 16 figure

    Molecular and Histological Effects of Glyphosate on Testicular Tissue of the Lizard Podarcis siculus

    Get PDF
    The expansion of agriculture produces a steady increase in habitat fragmentation and deg‐ radation due to the increased use of pesticides and herbicides. Habitat loss and alteration associated with crop production play an important role in reptile decline, among which lizards are particularly endangered. In this study, we evaluated testicular structure, steroidogenesis, and estrogen receptor expression/localization after three weeks of oral exposure to glyphosate at 0.05 and 0.5 μg/kg body weight every other day in the field lizard Podarcis siculus. Our results show that glyphosate affected testicular morphology, reduced spermatogenesis, altered gap junctions and changed the localiza‐ tion of estrogen receptors in germ cells, increasing their expression; the effects were mostly dose‐ dependent. The result also demonstrates that glyphosate, at least at these concentrations, did not influence steroidogenesis. Overall, the data indicate that this herbicide can disturb the morphophys‐ iology of the male lizard’s reproductive system, with obviously detrimental effects on their repro‐ ductive fitness. The effects of glyphosate must be considered biologically relevant and could endan‐ ger the reproductive capacity not only of lizards but also of other vertebrates, including humans; a more controlled and less intensive use of glyphosate in areas devoted to crop production would therefore be advisable

    Functional Characterization of Porcine ( Sus scrofa ) BCL10

    Get PDF
    Human BCL10 (hBCL10) protein is a signal transduction molecule originally identified because of its direct involvement in a subset of mucosa-associated lymphoid tissue (MALT) lymphomas, and later recognized as a crucial factor in regulating activation of NF-kB transcription factor following antigen receptor stimulation on lymphocytes. In this study, we characterized the NF-kB inducing activity of porcine BCL10 (pBCL10). pBCL10 oligimerizes, binds to components of the CARMA/ BCL10/MALT1 complex and forms cytoplasmic filaments. Functionally, in human cells pBCL10 is more effective in activating NF-kB compared to hBCL10, possibly due to the lack of carboxy-terminal inhibitory serine residues present in the human protein. Also, depletion experiments carried out through expression of short hairpin RNAs targeting hBCL10 indicate that pBcl10 can functionally replace the human protein and retains its higher NF-kB-inducing property in the absence of hBCL10. Our results contribute useful information on BCL10 protein in pigs, and may help the development of strategies based on the control of the immune response in pigs

    A Mannose-Binding Lectin-Defective Haplotype Is a Risk Factor for Gastric Cancer

    Full text link

    Analisi delle preferenze criminali attraverso la metodologia dell’economia sperimentale

    Get PDF
    2012-2013Lo scopo della presente ricerca è stato quello di individuare le differenze relative alla propensione cooperativa ed a quella punitiva tra un campione di studenti, uno di camorristi ed uno di detenuti comuni. A tal fine sono stati realizzati due esperimenti, composti da due diversi disegni, rappresentati rispettivamente dal classico gioco del Dilemma del Prigioniero (PD) e da un Dilemma del Prigioniero con punizione di un terzo (TP-PD). I camorristi nel PD hanno manifestato una propensione cooperativa nettamente superiore a quella degli studenti ed a quella dei detenuti comuni, mentre nel TP-PD i due campioni di criminali hanno evidenziato un livello sostanzialmente identico di cooperazione, anche se rispetto alla minaccia di subire la sanzione hanno reagito in maniera opposta (i camorristi hanno ridotto il livello di cooperazione rispetto al PD mentre i comuni hanno fatto registrare un incremento). Gli studenti, al pari dei camorristi, nel TP-PD hanno cooperato meno rispetto a quanto abbiano deciso di fare nel Dilemma del Prigioniero. Inoltre, sia i camorristi che i detenuti comuni nel TP-PD hanno evidenziato una forte propensione punitiva (maggiore di quella rilevatasi negli studenti), anche se la rispettiva modalità di applicazione si è mostrata diversa. Inoltre ai tre campioni sono stati somministrati una serie di quesiti, contenuti in un apposito questionario, al fine di verificare le affinità/divergenze tra le decisioni concretamente assunte nel gioco e le risposte fornite alle domande formulate.[a cura dell'autore]XII ciclo n.s

    Multiscale Soil Salinity Assessment at the Southern Margin of the Venice Lagoon, Italy

    Get PDF
    Saltwater intrusion affects many coastlands around the world contaminating fresh-groundwater and decreasing soil quality. In order to manage saline soils one should understand the spatiotemporal dynamics of salinity in the soil profile and its spatial variability at field scale. In the last decades, soil and pore-water salinity have been assessed using geophysical techniques, most commonly with the use of apparent electrical conductivity (ECa) measurements. At point-scale, pore-water salinity can be estimated once its relationship with ECa, soil properties, and water content is understood. Moreover, most sensors for water content estimation normally provide biased readings in saline conditions and in soil with high clay and organic carbon contents. At field-scale proximal-sensing can be used to characterize large portions of land from a relatively small number of soil samples. Sometimes, characterizing salinity is however not sufficient to understand crop yield spatial variability, which can be also influenced by other soil properties. Understanding the influence of salinity and other soil properties on crop productivity can be useful in the identification of areas that can be managed site-specifically. The general aim of this dissertation is to evaluate some sensor-based methodologies for monitoring and characterizing salinity and other related soil properties both at point- and field-scale. In particular, at point-scale the dissertation will deal with the issues regarding the use of capacitive-resistive technology for water content and pore-water salinity estimation. At field-scale some methodologies will be proposed in order to characterize the spatial variability of salinity and other soil properties influencing maize (Zea mais L.) yield using soil proximal-sensing. All the material presented in this manuscript regard the soils of an area affected by saltwater intrusion located at the southern edge of the Venice Lagoon (Italy). The dissertation is structured in five chapters. The first one includes a review on commonly used methodologies for point- and field-scale salinity assessment. An overview on the environmental issues concerning the coastland at the southern margin of the Venice Lagoon is also presented. The second chapter deals with the calibration of a low-cost capacitance-resistance probe for simultaneous monitoring of soil water content and salinity. In the third chapter an ECa-directed soil sampling scheme optimization procedure is proposed. The forth chapter analyzes maize yield as a function of soil chemical and physical properties and investigates on the use of soil-proximal sensing correlated to soil spatial variability for site-specific management units. The final chapter presents the general conclusions of the work
    corecore