13 research outputs found

    Thermal niche predicts recent changes in range size for bird species

    Get PDF
    Species’ distributions are strongly affected by climate, and climate change is affecting species and populations. Thermal niches are widely used as proxies for estimating thermal sensitivity of species, and have been frequently related to community composition, population trends and latitudinal/elevational shifts in distribution. To our knowledge, no work has yet explored the relationship between thermal niche and change in range size (changes in the number of occupied spatial units over time) in birds. In this study, we related a 30 yr change in range size to species thermal index (STI: average temperature at occurrence sites) and to other factors (i.e. birds’ associated habitats, body mass, hunting status) potentially affecting bird populations/range size. We analysed trends of breeding bird range in Italy for a suite of poorly studied cold-adapted animals potentially sensitive to global warming, and for a related group of control species taxonomically similar and with comparable mass but mainly occurring at lower/warmer sites. We found a strong positive correlation between change in range size and STI, confirming that recent climatic warming has favoured species of warmer climates and adversely affected species occupying colder areas. A model including STI and birds’ associated habitats was not so strongly supported, with forest species performing better than alpine open habitat and agricultural ones. In line with previous works highlighting effects of recent climate change on community composition, species’ population trends and poleward/upward distributional shifts, we found STI to be the most important predictor of change in range size variation in breeding birds

    Ecological factors affecting foraging behaviour during nestling rearing in a high-elevation species, the White-winged Snowfinch (Montifringilla nivalis)

    No full text
    During breeding, parents of avian species must increase their foraging efforts to collect food for their offspring, besides themselves. Foraging trips are thus a key aspect of the foraging ecology of central-place foragers when rearing their offspring. However, studies of the foraging ecology of high-elevation specialists inhabiting harsh environments are scarce. Here we report for the fast time quantitative information on ecological determinants of foraging trips in the White-winged Snowfinch (Montifringilla nivalis), a high-elevation specialist threatened by climate warming. We focused on seasonal, meteorological, habitat and social factors affecting distance and duration of foraging trips performed during nestling rearing, recorded by visual observations in the Italian Alps. Based on 309 foraging trips from 35 pairs, we found that trips lasted 6.12 min and foraging areas were located at 175 m from the nest site on average. Trip duration was affected by snow cover (longer at intermediate cover), distance travelled and wind, while distance travelled was affected by snow cover (being higher at intermediate cover) and trip duration. Foraging individuals thus travelled farther and spent more time at areas characterized by intermediate snow cover, implying the presence of snow margins. It is likely that at such snow patches/margins snowfinches collected food for self-maintenance, besides that for their offspring, or collected more food items. Any reduction of snow cover during the breeding season, as expected under current climate warming, will severely alter foraging habitat suitability. Conserving suitable foraging habitats in the nest surroundings will be crucial to buffer such negative impacts

    Past and future impact of climate change on foraging habitat suitability in a high-alpine bird species : management options to buffer against global warming effects

    Get PDF
    The majority of predictions about the impacts of climate change on wildlife have relied either on the study of species' physiological tolerance or on broad-scale distribution models. In comparison, little attention has been paid to species' mechanistic responses to fine-grained, climate-induced modifications of habitat suitability. However, such studies would be pivotal to the understanding of species' ecological requirements (and hence their adaptive potential to environmental change) and the design of management strategies. We investigated foraging microhabitat selection in a potentially climate-change sensitive species, the white-winged snowfinch Montifringilla nivalis, during the breeding season in the Alps. Our microhabitat selection model considered topography, ground-cover variables and sward height within a 5-m radius at foraging and control locations. Habitat selection was positively affected by grassland cover, negatively by sward height and quadratically by snow cover (optimum around 40%); birds avoided anthropized (urban areas, roads) sites. We estimated past (1976) and future (2066) climate-driven changes in foraging microhabitat suitability, assuming a progressively earlier date of snowmelt due to increasing temperatures over this entire time span. We then modelled the potential impact of snowmelt (and related sward height) on habitat suitability under two scenarios: maintaining the current situation (i.e. irregular seasonal grazing) and implementing targeted management in an attempt to mitigate impacts of earlier snowmelt. Predicted foraging habitat suitability (estimated as the fraction of suitable plots) significantly declined over time ( 1223% between 1976 and 2016, further 32% loss by 2066). However, model outputs demonstrated that maintaining sward height below 6 cm on breeding grounds (e.g. by regular grazing) would significantly decrease the predicted loss of suitable foraging habitat. Detailed information about patterns of resource exploitation allows the identification of mechanistic, functional responses of species to environmental change, and enables an evaluation of habitat management options that can buffer against the detrimental effects of global warming

    Species interactions and climate change: How the disruption of species co-occurrence will impact on an avian forest guild

    No full text
    Interspecific interactions are crucial in determining species occurrence and community assembly. Understanding these interactions is thus essential for correctly predicting species' responses to climate change. We focussed on an avian forest guild of four hole-nesting species with differing sensitivities to climate that show a range of well-understood reciprocal interactions, including facilitation, competition and predation. We modelled the potential distributions of black woodpecker and boreal, tawny and Ural owl, and tested whether the spatial patterns of the more widespread species (excluding Ural owl) were shaped by interspecific interactions. We then modelled the potential future distributions of all four species, evaluating how the predicted changes will alter the overlap between the species' ranges, and hence the spatial outcomes of interactions. Forest cover/type and climate were important determinants of habitat suitability for all species. Field data analysed with N-mixture models revealed effects of interspecific interactions on current species abundance, especially in boreal owl (positive effects of black woodpecker, negative effects of tawny owl). Climate change will impact the assemblage both at species and guild levels, as the potential area of range overlap, relevant for species interactions, will change in both proportion and extent in the future. Boreal owl, the most climate-sensitive species in the guild, will retreat, and the range overlap with its main predator, tawny owl, will increase in the remaining suitable area: climate change will thus impact on boreal owl both directly and indirectly. Climate change will cause the geographical alteration or disruption of species interaction networks, with different consequences for the species belonging to the guild and a likely spatial increase of competition and/or intraguild predation. Our work shows significant interactions and important potential changes in the overlap of areas suitable for the interacting species, which reinforce the importance of including relevant biotic interactions in predictive climate change models for increasing forecast accuracy
    corecore