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Abstract

Fine-scale habitat selection modelling can allow a mechanistic understanding of

habitat selection processes, enabling better assessments of the effects of climate

and habitat changes on biodiversity. Remotely sensed data provide an ever-

increasing amount of environmental and climatic variables at high spatio-

temporal resolutions, and a unique opportunity to produce fine-scale habitat

models particularly useful in challenging environments, such as high-elevation

areas. Working at a 10-m spatial resolution, we assessed the value of remotely

sensed data for investigating foraging habitat selection (in relation to topography,

microclimate, land cover) in nestling-rearing white-winged snowfinch (Montif-

ringilla nivalis), a high-elevation species highly sensitive to climate change. Adult

snowfinches foraged at locations with intermediate vegetation cover and higher

habitat heterogeneity, also avoiding extremely warm or extremely cold microcli-

mates. Temperature interacted with other environmental drivers in defining habi-

tat selection, highlighting trade-offs between habitat profitability and

thermoregulation: snowfinches likely adopted mechanisms of behavioural buffer-

ing against physiologically stressful conditions by selecting for cooler, shaded and

more snowy foraging grounds at higher temperatures. Our results matched those

from previous studies based on accurate field measurements, confirming the spe-

cies’ reliance on climate-sensitive microhabitats (snow patches and low-sward

grassland, in heterogeneous patches) and the usefulness of satellite-derived fine-

scale modelling. Habitat suitability models built on remotely sensed predictors can

provide a cost-effective method for periodic monitoring of species’ habitats both

at fine grain and over large extents. Fine-scale models also enhance our under-

standing of the actual drivers of (micro)habitat selection and of possible buffering

behaviours against warming, allowing more accurate and robust distribution

models, finer predictions of potential future changes and carefully targeted conser-

vation strategies and habitat management.

Introduction

Biodiversity is under anthropogenic pressure worldwide at

all levels, from genes to biomes (Brook et al., 2008; Parme-

san & Yohe, 2003), and thousands of species are indeed

threatened by climate and habitat changes (Spooner

et al., 2018). The impacts of past or future changes have

been often evaluated by means of large-scale species distri-

bution models (SDMs; Guisan & Zimmermann, 2000),

overlooking fine-scale factors that—acting within the spe-

cies’ home range—are more likely to ultimately drive its

response to environmental changes (Engler et al., 2017;

Lenoir et al., 2013). The importance of microclimate and

microhabitat for many species is now increasingly emerging
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(Pincebourde et al., 2016; Scherrer & K€orner, 2011; Suggitt

et al., 2018). Modelling habitat use at ecologically sound

(finer) scales allows us to increase the biological realism of

the models (Bellard et al., 2012; Randin et al., 2009) by

focussing on the environmental conditions that directly

affect a species: depending on its ecology, such ‘fine-scale’

factors could be roughly conceived as those acting in the

order of metres (for instance, ornithological studies refer-

ring to ‘microhabitat’ are implemented at spatial resolu-

tions between 1 and 707 m2; Morales et al., 2008; Patthey

et al., 2012). By suggesting more causal species-habitat rela-

tionships (Dormann et al., 2012), fine-scale models may

provide better predictions of species exposure (and vulner-

ability) to future impacts, helping to target more effective

in situ conservation actions: for example, Bennett

et al. (2015) and Brambilla, Resano-Mayor, et al. (2018)

reported different levels of adaptability and vulnerability,

respectively, to climate change among subpopulations of

their target species (the Neartic butterfly Euphydryas editha

and the white-winged snowfinch Montifringilla nivalis) due

to different fine-scale habitat selection patterns; indeed,

both studies suggested how these site-specific patterns need

to be accounted if effective management is to be imple-

mented. Nevertheless, working on such fine scales is highly

demanding, especially in remote areas, both physically and

economically. In addition, the need to measure environ-

mental predictors by means of dedicated fieldwork largely

prevents the generalization and extrapolation of models

worked out at high resolution.

The technological progress of remote sensing (RS) is now

opening new opportunities (Arenas-Castro & Sillero, 2021;

Nagendra et al., 2013), allowing the collection of environ-

mental data over very large spatio-temporal extents, in a uni-

form, scalable and fast way, and at relatively low costs (He

et al., 2015; Rocchini et al., 2010). Progressively finer spatial

resolutions are now available free-of-charge, increasing the

opportunity to track environmental gradients and to build

fine-grained, robust and transferable models (He

et al., 2015; Leit~ao & Santos, 2019; Randin et al., 2020).

These advances also involve climate modelling (Potter

et al., 2013; Zellweger et al., 2019), allowing a high-precision

characterization of abiotic components of the landscapes

(e.g. air temperature, radiation, wind speed, humidity, soil

moisture and snow depth; Kearney et al., 2020).

Among the terrestrial biomes, alpine ecosystems are suf-

fering from higher rates of climate warming (Brunetti

et al., 2009; Pepin et al., 2015) and other habitat modifica-

tions, induced by pastoral abandonment (Laiolo et al., 2004)

and recreational activities (Rolando et al., 2007), among

others. Such factors often impact simultaneously and syner-

gistically (Brambilla et al., 2016; Chamberlain et al., 2013),

with highly detrimental effects on alpine avifauna (Scridel

et al., 2018; Tayleur et al., 2016). Within these complex

environments, species’ reliance on specific, fine-scale, habitat

features could lead to context-specific adjustments of habitat

use (Moritz & Agudo, 2013; Oswald et al., 2019), or to dif-

ferent levels of vulnerability even between populations of the

same species (Brambilla, Capelli, et al., 2018), with poten-

tially strong consequences for population persistence and

related management. Fine-scale models of habitat use by

alpine birds have recently shed light on the relevance of fine-

grained predictors for understanding the ecology of these

species; factors such as local vegetation characteristics, soil

humidity, snowmelt pattern or the sward height of alpine

grassland proved to be good predictors of habitat use (Barras

et al., 2020; Brambilla et al., 2017; J€ahnig et al., 2018). Lar-

gely based on variables directly assessed by researchers on

the ground, such models can hardly be transferred to differ-

ent areas or over different periods without a substantial load

of additional fieldwork. However, given the high warming

rates of mountains (Brunetti et al., 2009; Pepin et al., 2015),

the sensitivity of alpine species to climate and habitat

changes (Scridel et al., 2018; Tayleur et al., 2016) and the

relevance of fine-grained predictors for their ecology (Barras

et al., 2020; Brambilla et al., 2017; J€ahnig et al., 2018), large-

scale predictions of fine-scale habitat suitability would be

particularly important for prioritizing conservation efforts

and designing effective management plans (cf. Chamberlain

et al., 2012). RS data could, thus, allow the production of

spatially explicit, fine-grained suitability maps to under-

stand, predict and timely monitor threatened species’ distri-

butions and their habitats, over entire regions. In addition,

thanks to the recent availability of microclimate models, it is

now possible to evaluate trade-offs affecting—and buffering

behaviours adopted by—animal species facing climate

warming, at very relevant spatio-temporal scales.

In this study, we focused on the white-winged snow-

finch (M. nivalis; Aves: Passeridae), a Palaearctic moun-

tain specialist, particularly sensitive to climate change

(Brambilla et al., 2016; Maggini et al., 2014). Previous

studies have shown that both the large-scale distribution

(Brambilla et al., 2017; Brambilla et al., 2020; de Gabriel

et al., 2021) and the fine-scale habitat use (Bettega

et al., 2020; Brambilla et al., 2017; Brambilla et al., 2019;

Brambilla, Capelli, et al., 2018; Brambilla, Resano-Mayor,

et al., 2018; Resano-Mayor et al., 2019) are strongly

affected by climate or climate-dependent, often ephem-

eral, resources. We focused on snowfinch habitat use dur-

ing the critical nestling-rearing phase, when breeding

birds are highly dependent on snow patches, their melting

margins and short-sward or low-density alpine grasslands,

which are all microhabitats highly vulnerable to climate

warming (Choler et al., 2021; Klein et al., 2016).

Here, we investigated habitat selection of foraging

snowfinches by combining daily estimates of topography,

microclimate and land-cover data, all derived from RS
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open-source technologies at a 10 m/px-resolution, and

further tested the role of microclimate per se and in inter-

action with other habitat components (Fig. 1). Finally, by

comparing the output of our RS-derived models with

those provided by previous models based on very high-

resolution variables recorded in the field, we explored

whether the former may be used in lieu of the latter to

generate large-extent evaluation of fine-grained habitat

suitability, a key step to identify crucial areas for conser-

vation and habitat management or restoration. This study

therefore represents a first step towards (1) a modelling

framework aimed to increase the robustness, extent and

applicability of fine-scale habitat suitability models to

monitor vulnerable species remotely, and (2) a first evalu-

ation of buffering behaviour against warming in an alpine

species using RS predictors.

Materials and Methods

Study area and occurrence data

We investigated the habitat use by foraging snowfinches

in central-eastern European Alps during the nestling-

rearing period (7 June–19 July) in 2017. We considered

15 pairs, breeding above the treeline (between 2100 and

3000 m asl; Table S1 and Fig. S1), in areas dominated by

alpine grassland, rocks and snowfields, in varying propor-

tions, with rare shrubs. Breeding adults were observed

while foraging, by means of binoculars, and the exact

location of successful foraging events (up to 20 per day

per pair; mean � SD: 17.77 � 4.76) was recorded by

means of a portable GPS or mapped on very detailed aer-

ial photographs (scale 1:2000). This kind of data had been

previously used to model fine-scale habitat selection by

means of environmental variables mainly recorded by

researchers in the field in previous studies (Brambilla

et al., 2017; Brambilla et al., 2019; Brambilla, Resano-

Mayor, et al., 2018). Seven out of 15 pairs were surveyed

twice, with the temporal gap between the two visits never

exceeding 10 days (Table S1).

The foraging locations were imported into QGIS 3.10.1

(QGIS Development Team, 2018) and a 2-m buffer was

added around each point to account for possible measur-

ing error at the moment of the on-field collection. For

each location, a control point was randomly generated,

being within 300 m from the pair’s nest (or the most

exploited area in the cases when the nest was not found)

and at least 25 m far from any foraging location. This

procedure led to a total of 782 records, comprising an

equal number of foraging (occurrences, n = 391) and

control plots (pseudo-absences, n = 391) for each breed-

ing pair (and for each day of survey, in the case of pairs

surveyed twice).

Environmental data

Land-cover data were extracted from open-source, high-

resolution multispectral images collected by the Sentinel-2

satellite of the ESA Copernicus mission (Drusch

et al., 2012), widely used for ecological mapping, but sel-

dom applied to animal distributions (e.g. Cisneros-Araujo

et al., 2021; Stokes et al., 2021; Valerio et al., 2020; Wang

et al., 2020). Sentinel-2 images were searched and down-

loaded from the EarthExplorer website (https://

earthexplorer.usgs.gov/) in the format Level-1C (ortho-

rectified images); only images with no cloud cover were

selected to allow a correct estimation of land-cover fea-

tures. The study sites fall into two tiles, namely T32TPS

(Passo Stelvio and Passo Gavia) and T32TQS (Passo Sella

and Passo Pordoi); for the former, three images were

selected (capture dates: 13 and 26 June, 16 July 2017),

whereas for the latter only one cloud-free image was

Figure 1. A visual representation of the approach adopted in this study to investigate foraging habitat selection by nestling-rearing snowfinches.
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available (13 June 2017). All images were captured by the

Sentinel-2A satellite. In QGIS, the images were atmo-

spherically and topographically corrected by means of the

Dark Object Subtraction (in Semi-Automatic Classifica-

tion Plugin; Congedo, 2021) and the Cosine-Correction

(Civco, 1989; in SAGA plugin) respectively. For each

multispectral image, four spectral indices were derived

(see Table S2 for calculation and references):

• Normalized difference vegetation index (NDVI) and

secondary modified soil-adjusted vegetation index

(MSAVI2) to quantitatively assess the vegetation green-up;

• Soil composition index (SCI) to capture the presence

of bare ground and anthropized areas;

• Normalized difference snow index (NDSI) for the snow

component of the landscape.

These indices are band operations that highlight speci-

fic land-cover features thanks to their unique spectral sig-

nature: their values range from �1 to 1, with higher ones

associated with the specific feature they are meant to rep-

resent. A Tasseled Cap Transformation (Kauth &

Thomas, 1976) was implemented starting from bands 2,

3, 4, 8, 11 and 12, using the Sentinel-2-specific coeffi-

cients suggested by Shi & Xu (2019); see also Text S1.

This PCA-like (but scene-independent) procedure returns

a fixed number of uncorrelated axes, that is images, to be

used as covariates: brightness, greenness and wetness asso-

ciated with the soil/albedo, vegetation and water response

respectively; the latter proved to be a good proxy of snow

cover too (Zhang et al., 2002), also within our data (de-

tails not shown). The Tasseled Cap images were also used

to derive the multidimensional Rao’s Q index (Rocchini

et al., 2017), by means of the paRao function in the R

package rasterdiv (Marcantonio et al., 2021), in order to

capture the overall spectral (and environmental) hetero-

geneity of the landscape at the finest spatial scale (i.e.

within a 3 9 3 pixel window; Text S1). A 10-m raster of

the elevation was obtained from the TINITALY (http://

tinitaly.pi.ingv.it/Download_Area2.html; tiles W51560 and

W5157; Tarquini et al., 2012) and used to derive the vari-

able aspect (later transformed in aspect_lin; Text S1),

roughness and slope (R package raster; Hijmans, 2022).

Solar radiation was calculated in GRASS 7.2 (Neteler

et al., 2012; function r.sun) as the global radiation taking

into account any shadowing effects of the surrounding

reliefs, for 3 days (10 June, 21 June and 19 July), and

interpolated to the exact day of the surveys (as for the

land-cover variables, see below).

Following Maclean et al. (2019), the microclimatic vari-

ables were derived from the R packages NicheMapR

(Kearney & Porter, 2017) and microclima (Maclean

et al., 2019), which operate a downscaling of macrocli-

matic data, based on a high-resolution DEM (here, TINI-

TALY) and a few other inputs (see Text S1). We derived

the minimum, median and maximum air temperatures

estimated for eight temporal windows covering the survey

period (each observation was then associated with the

closest window; Table S3). Temperatures were estimated

at 1 m height because we had at least one on-field mea-

sure per day of air temperature at a 1 m height (recorded

according to Brambilla et al., 2017), which we used to

validate microclimatic models and to select the most reli-

able temperature estimate provided by modelling.

For each variable (hereafter, the ‘pixel’ variable), we

derived a measure of its fine-scale spatial variation (the

‘stdev’ variable, representing heterogeneity within the sur-

rounding area) by calculating its standard deviation in a

3 9 3 pixel window around each pixel of the raster (see

Text S1). Roughness was used as the ‘heterogeneity coun-

terpart’ of elevation and Rao’s Q index was considered as

a measure of heterogeneity with no ‘pixel counterpart’

(Table 1).

For each of the 782 records we calculated the value of

all variables: if the point circle (i.e. the record with its 2-

m buffer) fell into two or more pixels, the value extracted

was the mean of the pixel values, weighted according to

the overlap between each single pixel and the circle.

For Stelvio and Gavia passes, three values were

extracted for each land-cover variable (one for each date

of the Sentinel-2 images) and then linearly interpolated to

obtain measures at the exact day of the survey (see

Text S1). In Passo Sella and Passo Pordoi, we took the

value measured for a single Sentinel-2 image since there

was no another image available for interpolation; anyway,

the short temporal gap between surveys (7, 9, 12 and 14

June) and Sentinel-2 capture (13 June) should prevent

any potentially consistent bias (Table S3).

Statistical analysis

The analyses were performed using the software R 4.0.3

(R Development Core Team, 2020).

All the environmental variables derived from RS data

were checked for linearity and for the presence of outliers:

all the ‘stdev’ variables and slope were log-transformed,

whereas solrad was elevated to the power of 10; two

records were removed as outliers.

Before modelling, we checked for consistency between

environmental data collected during the fieldwork and RS

data (results in Text S3.1).

The perfectly balanced, matched design of ‘cases’ (ob-

served foraging events) and ‘controls’ (control points) led

us to use conditional logistic regression (Hosmer

et al., 2013) to investigate habitat selection by foraging

snowfinches. Conditional logistic regressions were imple-

mented by means of the clogit function in the survival R

package (Therneau, 2021). By comparing observations

618 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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and control points within the same ‘stratum’, this mod-

elling framework allowed us to derive population-

averaged estimates of the coefficient effects, accounting

for the stratified intrinsic nature of the data: we used the

combination ‘pair 9 survey date’ as ‘stratum’, distin-

guishing two visits to the same breeding pair into two

different strata (Table S3). We adopted an Information

Theoretic Approach (Burnham & Anderson, 2002), and

ranked models by BIC (Bayesian information criterion,

which gave more parsimonious results than AIC and

AICc in a preliminary analysis). To develop and test

models on independent datasets, we split the data into a

training and a testing dataset by a ratio of 68:32 observa-

tions. Hence, 13 and 5 independent strata (i.e. 10 and 5

pairs respectively) were included in the training and test-

ing dataset respectively (Table S3).

We built univariate and multivariate models, scaling

the variables prior to each model fitting in order to make

their coefficients more interpretable and their effect size

comparable. The inclusion of squared terms and interac-

tions was tested if ecologically relevant and retained only

if statistically supported (i.e. when it led to a model with

a lower BIC). For multivariate modelling, we first built

within-group models (i.e. having only ‘pixel’ or ‘stdev’

variables), to test the utility of heterogeneity measures,

and then a synthetic model including them all (further

details in Text S2). Prior to each model estimation, we

retained only variables with variance inflation factor <5
to reduce multicollinearity problems (Chatterjee &

Hadi, 2006). We estimated and ranked the models by

means of the dredge function in the MuMin R package

(Barto�n, 2020). When more competing models had simi-

lar BIC values (DBIC <2 from the most supported one;

after excluding those having uninformative parameters,

sensu Arnold, 2010), they were averaged by means of the

‘full average’ method (Barto�n, 2020).

Adjusted R2 (function MuMIn::r.squaredLR) was calcu-

lated on the training dataset for each most supported

model. The latter were validated on the testing dataset

visually and by means of the AUC (area under the curve)

estimate from the ROC plot (Fielding & Bell, 1997): val-

ues closer to 1 indicate a better discriminatory power of

the model, while a value of 0.5 indicates a completely

random behaviour of the model. As suggested by Ther-

neau et al. (1990), the model residuals were plotted

against each predictor to check for their random beha-

viour.

Results

In the univariate analysis, the heterogeneity variables

(‘stdev’) were distinctly better predictors than ‘pixel’ vari-

ables (particularly those related to snow and land cover;

Table S4 and Text S3.2). In the multivariate analysis, the

‘stdev’ models were outperformed by the ‘pixel’ ones,

while the BIC values of both were markedly higher than

the BICs of synthetic models (Table 2). The adjusted R2

of the most supported models were invariably high,

Table 1. The 29 environmental variables derived from remotely sensed data.

‘Pixel’ variable Name or description Value range (Unit)

Associated ‘stdev’

variable

Land cover (from Sentinel-2A multispectral images)

NDVI Normalized difference vegetation index �0.17 � 0.77 (�) stdev_NDVI

MSAVI2 Secondary modified soil-adjusted vegetation index �0.05 � 0.58 (�) stdev_MSAVI2

SCI Soil composition index �0.77 � 0.33 (�) stdev_SCI

NDSI Normalized difference snow index �0.69 � 0.77 (�) stdev_NDSI

Brightness Soil, vegetation and water axes of the Tasseled Cap transformation 0.08 � 0.91 (�) stdev_Brightness

Greenness �0.28 � 0.18 (�) stdev_Greenness

Wetness �0.38 � 0.23 (�) stdev_Wetness

- Multidimensional Rao’s Q index, calculated on the three Tasseled Cap axes 0.05 � 4.03 (�) Rao_TC

Topoclimate (from TINITALY DEM and NicheMapR/microclima R packages)

Elevation Elevation 2144 � 3023 (m) roughness

Slope Slope 0.22 � 53.5 (°) stdev_slope

aspect_lin (Transformed) orientation of the slope �1.0 � 1.0 (�) stdev_asplin

solrad Daily solar radiation 7327 � 9650 (Wh/m2d) stdev_solrad

Tmin_1m Minimum, medium and maximum air daily temperature 1 m above the ground �11.0 � 4.4 (°C) stdev_Tmin_1m

Tmed_1m �1.6 � 9.6 (°C) stdev_Tmed_1m

Tmax_1m 3.6 � 15.9 (°C) stdev_Tmax_1m

The name or a brief description, the value range in the dataset and the measurement unit (‘–’ stands for adimensional) are provided for the

‘pixel’ variables (the ones extracted as absolute values of the variable). From every ‘pixel’ variable, a measure of its fine-scale variation was derived:

the ‘stdev’ variable, calculated as the standard deviation across a 3 9 3 pixel window. All the variables have a 10-m spatial resolution.
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ranging from 0.589 for the ‘stdev’ model, to 0.655 for the

‘pixel’ one, up to 0.746 for the synthetic model (Table 2).

The most supported synthetic models were averaged,

leading to a model with 13 terms, including all types of

predictors (both land cover and topoclimatic, both pixel

and of heterogeneity), four quadratic effects and three

interactions (Table 3; see also Fig. S2). According to this

averaged synthetic model, fine-scale foraging habitat suit-

ability for breeding snowfinches was highest in patches

with higher snow cover heterogeneity (stdev_Wet-

ness_LOG); intermediate levels of NDVI, temperature and

solar radiation; and lower values of the ground index

(SCI) and roughness (Fig. 2A). The interaction effects

suggested that, when temperature was higher, snowfinches

tended to forage in sites with higher levels of snow cover

heterogeneity, with lower solar radiation and on more

rugged terrains (Fig. 2B).

The validation procedure suggested that the averaged

synthetic model had a very good discriminatory power

when tested on the training data (AUCtrain = 0.881 �
0.029), and still good when transferred to the testing data-

set (AUCtest = 0.802 � 0.055). The residuals showed a ran-

dom behaviour, aligning roughly along a horizontal line

(Fig. S3).

Discussion

Local environmental characteristics directly affect habitat

use and modulate the species’ response to current climatic

alterations (Massimino et al., 2020; Pateman et al., 2016).

Effective methods to investigate such fine-scale patterns

are hence needed to derive sound management recom-

mendations for conservation. With this work, we explored

the potential value of RS variables for describing the fine-

scale foraging habitat selection in white-winged snow-

finches, taking advantage of the possibility to compare

the outcomes with already available fine-scale models

developed on predictors measured in the field. RS predic-

tors led to statistically high-performing models, which

depicted ecologically sound species-habitat relationships,

fully consistent with results based on field-measured pre-

dictors (see Table 4 for a quantitative comparison). Land

cover, topography and climate, all contributed to patterns

of habitat selection.

In the alpine context, the seasonal phenological devel-

opment of grass vegetation provides the main contribu-

tion to the NDVI values derived by satellite, hence the

intermediate values (preferred by the species) in 10-m

pixels may represent a uniform grassy patch at intermedi-

ate stages of phenological development or describe a scat-

tered distribution of developed but sparse grassy

microhabitats. In both cases, such a pattern of selection

mirrored the preference for low-sward, or partial cover

of, grassland, observed in the field (Brambilla et al., 2017;

Brambilla, Resano-Mayor, et al., 2018; Resano-Mayor

et al., 2019). NDVI hence was confirmed as a good proxy

for the phenology and also for the structure of vegetation

(Fontana et al., 2008). This selection operated by foraging

snowfinches likely represents the trade-off between abun-

dance and detectability/accessibility of prey items (arthro-

pods): their availability is higher in dense high-sward

alpine grassland (Antor, 1995), but their detectability for

birds increases in more open (micro)habitats, as low-

sward grassland interrupted by bare ground (Butler &

Gillings, 2004; Stillman & Simmons, 2006). The strong

effects of stdev_Wetness_LOG (representing fine-scale

variation in snow cover) on the foraging suitability distin-

guished the two most important foraging (micro)habitats

for the species: the grassland (at low levels of snow cover

heterogeneity) and the snow (at higher ones; Fig. S4). For

the latter, the 10-m resolution prevented the distinction

between the foraging on snow patches from the use of

snow margins (Brambilla et al., 2017; Brambilla et al.,

2019; Brambilla, Capelli, et al., 2018; Brambilla, Resano-

Mayor, et al., 2018; Resano-Mayor et al., 2019). Snow-

fields provide highly detectable and easily collectable

invertebrates, blown by the wind (Antor, 1995), whereas

the margins host tipulid larvae which frequently represent

the most abundant prey items during the nestling-rearing

phase of the species (Heiniger, 1991). The effect of NDVI

and stdev_Wetness_LOG, as well as the results of the uni-

variate analysis, clearly suggest the importance of habitat

heterogeneity (especially for snow cover) at this scale,

confirming the positive association between foraging

Table 2. Most supported multivariate models fitted on training dataset with ‘pixel’ variables only, ‘stdev’ variables only and with both

(‘synthetic’).

Model Predictors included df BIC Adjusted R2 AUCtest (�SD)

Pixel Landcover_pix + Topoclimatic_pix 10 532.53 0.655 0.774 � 0.059

Stdev Landcover_stdev + Topoclimatic_stdev 9 555.25 0.589 0.751 � 0.063

Synthetic All 13 477.72 0.746 0.802 � 0.055

All the variables were scaled before model fitting. Degrees of freedom (df), BIC, adjusted R2 and the AUC scores (mean � SD) on the test dataset

are reported. For the ‘stdev’ and ‘synthetic’ models, BIC and adjusted R2 refer to the most supported model among those used for averaging.
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suitability and the number of different habitat patches

found in Brambilla et al. (2017); Table 4. The negative

selection for the SCI, which reached lowest values at or

around snow patches (Fig. S4), provides further support

for the preference for foraging habitats closer to snow

and for the avoidance for anthropized areas (as revealed

by Brambilla, Resano-Mayor, et al., 2018). The avoidance

for higher and lower values of solar radiation is also con-

sistent with previous results (Brambilla et al., 2017), espe-

cially for what concerns the avoidance of highly radiated

patches.

Remotely derived, spatially explicit estimates of air tem-

perature were never used before for habitat modelling in

this species and gave crucial, interesting results, highlight-

ing how thermal conditions may shape the foraging

behaviour of a cold-adapted species. Such a kind of evi-

dence has been rarely integrated into fine-scale habitat

selection studies and collected only for a few other moun-

tain species (Oswald et al., 2019; partially by Visinoni

et al., 2015). Extreme temperatures were deemed by the

models to reduce the foraging suitability: on the one hand,

very cold conditions may reduce the gain-cost foraging

trade-off by reduced rates of invertebrate activity

(Somme, 1989), hence hampering prey availability (i.e.

abundance modified by accessibility; Schaub et al., 2010);

on the other hand, hot conditions may increase the costs

for thermoregulation, reducing foraging gains. This second

aspect clearly emerged analysing the temperature interac-

tions: as the air temperature increased, snowfinches tended

to forage closer to the snow and in cooler sites (i.e. more

rugged and less radiated). This may represent a mecha-

nism of behavioural buffering (Huey et al., 2012) to avoid

the most physiologically stressful conditions during the

foraging activity. Unlike what has been observed in the

Cape rock-jumper (Chaetops frenatus), a South African

endemic alpine passerine, that reduces its foraging activity

not to expose to stressful hot conditions (Oswald

et al., 2019), here warmer temperatures (within the range

covered by our study) may shape, rather than prevent, for-

aging activity (as in Hayford et al., 2015; Wachob, 1996).

Moreover, the increased selection for the snow patches

might suggest the double function of this habitat in war-

mer conditions, both as foraging ground and as relief

habitat (Ion & Kershaw, 1989). Other cold-adapted avian

species had been observed using the snow as a relief habi-

tat (e.g. Lagopus spp.; Rosvold, 2016), although not while

foraging. By balancing temperature and solar radiation,

foraging snowfinches could select the microhabitats that

maximize energy gains according to the trade-off between

profitability and thermoregulatory costs. Considering that

nestling rearing is energy- and time-consuming and that it

takes place during the warmest season, thermoregulatory

costs may be particularly limiting in this phase for an

elevation-specialist and cold-adapted species such as the

snowfinch.

All these insights would have been very hard (and

expensive) to get without the use of RS predictors: micro-

climatic models (Kearney et al., 2020) provided affordable

Table 3. Beta coefficients (mean � SE) of the most supported synthetic models and averaged model (AVG) describing foraging habitat selection

by breeding snowfinches (for all the other models DBIC >4).

M1 M2 M3 AVG

Selected predictors Effect

NDVI Linear �0.014 � 0.235 �0.042 � 0.230 0.177 � 0.227 0.032 � 0.249

Quadratic �0.904 � 0.168 �0.854 � 0.165 �0.707 � 0.148 �0.829 � 0.180

solrad10 Linear �0.323 � 0.182 �0.276 � 0.168 �0.271 � 0.168 �0.291 � 0.175

Quadratic �0.478 � 0.122 �0.500 � 0.121 �0.525 � 0.122 �0.499 � 0.123

Tmax_1m Linear �3.55 � 1.61 �2.54 � 1.59 �2.09 � 1.60 �2.77 � 1.71

Quadratic �3.28 � 0.965 �4.49 � 0.916 �4.18 � 0.895 �3.97 � 1.07

stdev_Wetness_LOG Linear 0.861 � 0.215 0.857 � 0.206 1.27 � 0.223 0.978 � 0.283

Quadratic 0.445 � 0.148 0.130 � 0.218

SCI Linear �0.698 � 0.202 �0.601 � 0.196 �0.460 � 0.342

roughness_LOG Linear �0.163 � 0.147 �0.058 � 0.118

solrad10:Tmax_1m – �0.527 � 0.173 �0.600 � 0.162 �0.586 � 0.159 �0.570 � 0.168

stdev_Wetness_LOG:Tmax_1m – 1.30 � 0.231 1.35 � 0.219 1.15 � 0.234 1.28 � 0.242

roughness_LOG:Tmax_1m – 0.564 � 0.195 0.201 � 0.294

Model statistics

df 12 10 10 13

LogLik �205.36 �210.96 �211.14 –

BIC 477.72 477.75 478.11 –

DBIC 0 0.033 0.394 –

All models also included stratum-specific intercepts (not displayed). Model statistics are reported for each model, below the beta coefficients.
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but reliable estimates of local temperature at highly rele-

vant spatio-temporal scales, allowing us to disclose how

(1) maximum temperature was a direct driver of habitat

selection, and (2) its interaction with other factors

revealed fundamental mechanisms affecting the microhab-

itat selection patterns.

In terms of RS data retrieval and their contribution to

model performance, Sentinel-2 images were subject to

Figure 2. Effects of variables included in the averaged synthetic model describing fine-scale habitat selection by foraging snowfinches. (A) Main

effects (and 95% CI) drawn for each stratum of the training dataset (colour legend on the right). Conditional logistic regression provides

population-averaged estimates of predictors’ effects and a stratum-specific intercept. The effects of NDVI, solrad10, Tmax_1m and

stdev_Wetness_LOG include the quadratic term. (B) 3D plots representing how foraging occurrence probability varies according to the

concomitant effects of variables interacting with temperature, that is solar radiation, roughness and wetness heterogeneity (stratum ‘PST10’ taken

as reference; confidence intervals not shown). The columns represent colder, mean and warmer conditions in blue, yellow and red respectively;

lower and upper temperature intervals were selected as (mean � 0.5 9 SD). All the variables were scaled before modelling; to know their original

values, see ‘Value Range’ in Table 1.

Table 4. A summary of the quantitative comparison between previous habitat selection (synthetic) models derived from the in-the-field environ-

mental data collection (Brambilla et al., 2017; Brambilla, Resano-Mayor, et al., 2018) and the present study, where environmental data were

totally derived from remote sensing.

‘In the field’ Remotely sensed

Brambilla et al. (2017) Brambilla, Resano-Mayor, et al. (2018) Present study

Year of data collection 2015 2016 2017

No. pairs/Foraging events 18/134 22/235 15/391

Model type c-logit c-logit c-logit

Spatial resolution 314 m2 78.5 m2 100 m2

Predictor measure % cover in a 10-m radius % cover in a 5-m radius 10-m pixel value and St. dev. among

3 9 3 px window

Predictor type Predictors included estimate (SE)

Vegetation Grassland cover 0.313 (0.010) Grassland cover 0.57 (0.14) NDVI 0.032 (0.249)

Sward height �0.156 (0.059) Sward height �0.85 (0.16) NDVI2 �0.829 (0.180)

SD Sward height 0.032 (0.087)

Snow Snow cover1 �0.033 (0.028) Snow cover 2.00 (0.32) stdev_Wetness 0.978 (0.283)

Snow cover2 �0.72 (0.13) stdev_Wetness2 0.130 (0.218)

stdev_Wet 9 Tmax 1.28 (0.242)

Rock/anthrop. Rocks �0.021 (0.018) Anthropized �1.21 (0.45) SCI �0.460 (0.342)

Boulders 0.023 (0.012)

Bare ground 0.018 (0.031)

Other abiotic factors Solar radiation �0.0012 (0.0006) solrad �0.291 (0.175)

Slope �0.017 (0.002) solrad 9 Tmax �0.570 (0.168)

Water �0.049 (0.039) roughness �0.058 (0.118)

roughness 9 Tmax 0.201 (0.294)

Tmax �2.77 (1.71)

Tmax2 �3.97 (1.07)

Others cover factors No. of patches 0.075 (0.031)

Snow 9 Grassland 0.0063 (0.002)

Model performance

statistics

R22 0.30 R2 0.35 Adjusted R2 0.75

AUC2 0.75 � 0.06 AUC 0.80 � 0.06

The concordance among effects’ estimates is marked in italics. A more comprehensive qualitative comparison is presented in the Discussion sec-

tion and includes other previous studies as well. Note the novelty of using microclimatic estimates and the higher model performance statistics

related to the RS-derived model.
1

Quadratic effect according to univariate model, and positive/quadratic according to the MARS model; interaction effect fundamental to evaluate

its true impact.
2

Refers to a MARS model run with the same dataset (see Brambilla et al., 2017).
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cloud limitations that halved our initial dataset (data

from other years and/or other sites, also because the satel-

lite Sentinel-2B was not yet fully operating at that time)

but gave crucial land-cover information. On the other

hand, topoclimatic data had less explanatory power—
though ecologically paramount—but did not suffer from

any temporal or atmospheric shortcoming, and could be

implemented at even finer scales (hourly temperature esti-

mates and 1-m DEMs are already available). In our case,

well-developed snow models might provide complemen-

tary and important information in addition to satellite

multispectral images (also resolving some of their main

shortcomings). Such models could be very relevant in

high-elevation alpine landscapes, where the snow melting

and the subsequent grass development represent the main

drivers of key habitat characteristics. However, such mod-

els are still poorly implemented (Braunisch et al., 2021;

but see Zanotti et al., 2004).

The high consistency with previous studies based on

predictors manually measured in the field demonstrates

that RS environmental data provided relevant informa-

tion, at an acceptable spatio-temporal resolution, accurate

enough to investigate habitat selection (and infer poten-

tial behavioural mechanisms) at the very local scale. Our

results (1) confirmed snowfinch vulnerability to climate

change, highlighting how it relies on climate-sensitive

microhabitats, increasingly jeopardized by ongoing warm-

ing, and (2) provided quantitative evidence to preserve

suitable microhabitats (e.g. by targeted habitat manage-

ment) for this (and likely other) species during the criti-

cal period of nestling rearing.

The use of RS open-source data should be tested over

other environments and species, and undoubtedly pro-

moted. Since land-cover heterogeneity stands out as par-

ticularly important, RS data are particularly suited for

multiscale analyses allowing to find the right scale at

which such heterogeneity mostly affects a target species

(Seavy et al., 2009; Tapia et al., 2017). These insights

would be much harder to gain with variables recorded ‘by

hand’ in the field. Equally relevant, microclimatic models

enable a continuous, spatially explicit estimate of temper-

atures that would be prohibitive to obtain by means of

field equipment.

Finally, the potential extrapolation of RS-derived mod-

els opens the door to remote assessments of habitat suit-

ability at unprecedented spatial and temporal details. A

weekly assessment of the habitat suitability could allow us

to track habitat changes in occurrence sites, and to timely

address conservation actions towards those sites (or even

single pairs) most affected by unsuitable alterations. The

procedure chosen to extract information from the multi-

spectral images (i.e. by means of spectral indices and the

Tasseled Cap Transformation, rather than by an image

classification) was exactly meant to provide the most rig-

orous and replicable workflow, totally independent from

on-field measures. Moreover, these essential features, cou-

pled with the global extent of Sentinel-2 data, make possi-

ble to model the potential fine-scale habitat suitability for

foraging snowfinches over much broader areas, allowing

an upscale of the fine-grained habitat use to a macroeco-

logical level and an explicit test of model transferability

across different portions of the species’ range.

Conclusions

In the current study, the foraging habitat selection by

adult white-winged snowfinches, during the critical phase

of nestling rearing, has been modelled by the means of

RS environmental variables at a 10-m spatial resolution.

Despite the relative scarcity of available images, land-

cover variables derived from the satellite Sentinel-2

proved to be good proxies of the foraging patterns by

snowfinches. Even better performance arose when such

variables were integrated with other RS topoclimatic vari-

ables. Models outlined foraging patterns extremely consis-

tent with previous studies based on environmental

predictors collected directly in the field. This confirms:

(1) the already supposed drivers of foraging habitat selec-

tion in breeding snowfinches, (2) the importance of tem-

perature in modulating fine-scale species’ responses and

(3) the strict relationship that links the snowfinch to

climate-sensitive habitat features, resulting in a high vul-

nerability to the impacts of climatic and environmental

alterations. Even more relevant, this approach disclosed

the key interaction between temperature and other drivers

of habitat use that determines trade-offs between foraging

opportunities and thermoregulation in a cold-adapted

species. The information derived can be a solid base for

further ecological modelling at larger extents, made possi-

ble using RS data, demonstrating the potentiality of the

high-resolution RS tools in the ‘fine-grained revolution’

(Hannah et al., 2014) occurring in the field of ecology

and conservation biology.
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