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A B S T R A C T

Marine aquaculture is the fastest growing sector of global food production and is projected to increase to meet
future demand. Expansion and modernization of cultivation methods are needed to reach this target but a cost-
benefit evaluation for biodiversity conservation is required to achieve sustainable aquaculture practices. We
assess drivers of avian richness and abundance in a long-established seabird community present in a series of
longline mussel farms in Italy and in response to a recent modernization process in the farming methodology.
Over 2 years (24 surveys) we detected a remarkable diversity (15 species in 5 families) and abundance
(n= 5858) of birds, of which 40% (n= 6) are regarded as species of international conservation importance. Our
models highlighted that the strongest driver explaining variation in abundance and richness across sites was the
type of buoy and the associated cultivation method applied. The older and fast-declining double headrope de-
sign, offered greater stability for birds to rest. Conversely, the newer and mechanizable single headrope design
dominant method in our study site and projected to replace the older system, was unsuitable for birds. Our
findings confirm the function of mussel farms as a sort of marine protected area where low anthropogenic
disturbance, higher prey availability and suitable artificial structures promote the establishment of seabird
communities with minimal impacts on harvest. However, we suggest that potential modernization of farming
methods, important to meet future human demand, needs to be carefully assessed and compensated for, parti-
cularly where long-established seabird communities have formed in response to such practices.

1. Introduction

Over the past few decades, seafood production has grown at an
unprecedented rate in response to human exploitation of wild fisheries
beyond carrying capacity and to an increased demand for protein from
a world population that is growing exponentially (FAO, 2018). Marine
aquaculture is currently the fastest growing sector of global food pro-
duction, supplying ca. 50% of the seafood consumed globally, and is
projected to grow from 66.6 million metric tons (mmt) in 2012 to
93.2 mmt by 2030 (World Bank, 2013; FAO, 2018). However, to fill the
gap between supply and future demand, significant improvements in
aquaculture are required in ways that are socially and environmentally
sustainable. These must take into account the biodiversity conservation
perspective (Diana, 2009, Forrest et al., 2009, de Silva, 2012). Although
not universal, aquaculture can negatively impact water quality (Pitta
et al., 1998; La Rosa et al., 2002; Brooks et al., 2017), damage coastal

habitats (Primavera, 2006; Forrest et al., 2009), introduce non-in-
digenous species (Savini et al., 2010), increase bycatch incidents
(Barrett et al., 2019), and decrease the fitness of wild conspecifics
through diseases and genetic pollution (Maury-Brachet et al., 2008;
Johansen et al., 2011; Karlsson et al., 2016).

Of total global marine food production, about 14% consists of
marine bivalves of which 89% is produced through aquaculture and
only 11% from wild fisheries (Wijsman et al., 2019). Mussels are mostly
farmed using the longline system, which consists of growing mussel
larvae on ropes hanging from long, horizontal anchored lines sus-
pended from buoys (Sdrigotti and Fonda Umani, 2002; Wall, 1996;
Franzo et al., 2014). The ecological impacts of mussel farming ought to
be minimal compared to fish farming because bivalves obtain food
autonomously from the environment (i.e. filter feeding) whilst in fish
farms the accumulation of organic matter as a consequence of uneaten
food supplements can be high (Mazzola et al., 2000; Crawford et al.,
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2003; Danovaro et al., 2004). Various works have evaluated the con-
tribution of mussel farms to ecosystem services with positive regulating
services ranging from water purification and waste treatment (reducing
algal blooms, improvement of seagrass and macroalgae growth; Lindahl
et al., 2005, Peterson and Heck, 1999, Schröder et al., 2014, Waajen
et al., 2016), carbon, nitrogen and phosphorus sequestration (used for
shell and tissue growth; Srisunont and Babel, 2015, Clements and
Comeau, 2019), reduction of erosion processes (i.e. currents velocity;
Plew et al., 2005, Strohmeier et al., 2005, Stevens et al., 2008) and the
provision of cultural services such as tourism, scientific and educational
interactions, cultural activities and maintenance of community links
with the marine environment (van der Schatte Olivier et al., 2018).
Such regulation services seem to outweigh the negative impacts of
disruption to water flow, to phytoplankton populations, depositional
and benthic concerns and possible disruption to some cultural services
(i.e. recreational, aesthetic and spiritual interactions; Seafood Safety
Assessment Ltd., 2019). Mussels are also considered foundation species
(Bruno and Bertness, 2001) as their aggregation creates physical ar-
chitectures (aggregation devices or artificial reefs) which facilitate the
formation of biogenic habitats for many species including those of
conservation concern (Borthagaray and Carranza, 2007; Sanchez-Jerez
et al., 2011; Theodorou et al., 2015; Díaz López and Methion, 2017). In
addition, the development of aquaculture systems and the related ur-
banization of coastal areas has formed novel habitats as a result of the
presence of new artificial structures (i.e. pontoon, buoys, bridges) with
important consequences at a trophic level. Epifaunal assemblages that
grow on artificial floating structures have been found to differ in
composition, have greater density and growth rates and attract greater
abundances of associated predators than nearby shorelines (Costa-
Pierce and Bridger, 2002; Kirk et al., 2007; McKindsey et al., 2011).

An evaluation of the advantages and disadvantages provided by
artificial structures has been mostly focused on sedentary and errant

invertebrates and fish (People, 2006; Perkol-Finkel and Benayahu,
2007; Norrisey et al., 2006; Tallman and Forrester, 2007) whilst less
attention has been paid to marine vertebrates such as birds or mammals
(Würsig and Gailey, 2002). Studies describing the presence of these
animals in aquaculture systems are generally focused on finding non-
lethal methods for deterring predation and related economic losses on
aquaculture products (Nash et al., 2000; Ross et al., 2001; Varennes
et al., 2013), whilst descriptions of the conservation value of aqua-
culture for biodiversity are limited (Kirk et al., 2007; Barrett et al.,
2019). Depending on the location and type of aquaculture, available
literature describes bird assemblages encompassing various orders and
families including swans, geese and ducks (Anatidae), divers (Gavidae),
cormorants and shag (Phalacrocoracidae), herons (Ardeidae), grebes
(Podicepedidae), raptors (Accipitridae, Pandionidae), waders, gulls and
terns (Charadriiformes) and even passerines (Passeriformes) (see Callier
et al., 2018, Barrett et al., 2019 and references within). These are
sometimes of important conservation value as many seabird popula-
tions are declining globally (Croxall et al., 2012; Paleczny et al., 2015).
Birds may be attracted by mussel farms as they provide a direct (e.g.
predation on the farmed species) and indirect (e.g. acting as fish ag-
gregation devices) source of food (Varennes et al., 2015; Callier et al.,
2018). Furthermore, the presence of various types of artificial struc-
tures (i.e. buoys, ropes) can function as important sites for optimizing
energy consumption i.e. perching during feeding events, roosting areas
and stopover sites during migration (Fisher and Boren, 2012; Bordjan
et al., 2013). As a result, mussel cultures may provide poorly under-
stood hotspots for avian biodiversity, but little monitoring occurs in
these systems and potential changes on site may have important con-
sequences on the biodiversity that becomes established over time.

In this study, we examine drivers of avian diversity and abundance
in well-established mussel farms set up in Italy in the 1970s, in response
to a recent modernization in longline cultivation methods whilst

Fig. 1. Location of the study area in the Gulf of Trieste (Italy; bottom left map) and relative plots (n = 9) of mussel farms where bird counts and environmental
sampling took place. © OpenStreetMap contributors.
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controlling for various biotic and abiotic variables. In addition to pat-
terns of abundance and richness, we intend investigating species-spe-
cific effects for the most abundant species on site, namely
Mediterranean shag Phalacrocorax aristotelis desmarestii an endemic yet
declining bird of conservation concern listed in the Annex I of the
European Birds Directive (Directive 2009/147/EC) and for a common
species such as the yellow-legged gull Larus michahellis. Due to a rapid
rise in demand and need to increase the quantity and quality of the
harvest, mussels farming techniques and structures have changed over
time and across most continents (Theodorou et al., 2011, Spencer,
2002, Barrett et al., 2019). These changes are aimed at maximizing the
resistance of these systems to adverse weather conditions, as well as
increasing mussel productivity and the mechanization of the harvesting
process (Sustersic, 2011; Rosland et al., 2011; Cubillo et al., 2012). So
far, no evaluation on potential consequences of such changes for the
long-term established avifauna (ca. 50 years) has yet been carried out.

2. Methods

2.1. Study site

Our study site is located in Italy in the Gulf of Trieste (Fig. 1; N 45°
39′, E 13° 47′), a shallow basin (average depth 17 m, max depth 25 m;
Celio et al., 2002, Mozetič et al., 2002) of the Adriatic Sea, representing
the northern most part of the Mediterranean. Seasonal variations in
water temperature range from 8 to 24 °C at the surface and 8 to 20 °C in
the bottom layers (Vidović et al., 2016). The salinity of the water is
typically marine, ranging from 33 to 38.5%. (Ogorelec et al., 1991). The
mean tidal range is about 1 m, and rarely 1.5 m. The coastal area is
characterised by a rocky environment or sedimentary bottom with both
sandy and muddy areas. Here, we studied a series of mussel farms
covering an area of approximately 150 ha (length 8 km, 0.25 km width)
about 0.5 km from the shore and present within the Miramare UNESCO
Biosphere Reserve.

2.2. Changes in mussel farming methodologies

On our study site mussel farms date back to the middle of the
nineteenth century when they were initially cultured for oyster Ostrea
spp. (Mollusca: Bivalva) and later replaced by mussel cultivation, spe-
cifically the Mediterranean mussel Mytilus galloprovincialis (Mollusca:
Bivalva; Melaku Canu and Solidoro, 2014). Initially, they were grown
on wooden poles although these were later substituted (1970s) by
longline floating systems with a double or triple longline design
(healreinafter termed “biventia”; see Fig. 2). The biventia system is ra-
pidly disappearing in our study site with a − 54.2% decline recorded in
longline abundance between 1997 (n = 380) and 2019 (n = 174) in
favour of the more recent monoventia design which is now dominant
(n= 260) here (Franzosini, 1998; Solidoro et al., 2010; Sustersic, 2011;
COGIUMAR, 2019). This change in practice can be attributed to the
better resistance of monoventia to storm surges, encouraging greater
individual mussel growth (lower intraspecific competition for food
compared to biventia) and allows the incorporation of mechanized
harvesting, thus reducing costs and increasing harvesting capacities
(Rosland et al., 2011; Sustersic, 2011; Cubillo et al., 2012). These types
of longline system designs are not specific to our study site but have
been promoted by local authorities and occur in other Italian regions
(i.e. Sardinia, Saba, 2012) as well as across various countries of the
world (e.g. France, Slovenia, Albania, Greece, New Zealand, United
Kingdom and North America; pers. obser., Smith and Goddard, 1988,
Spencer, 2002, Danioux et al., 2000, Theodorou et al., 2011). The bi-
ventia longline uses fiberglass barrels (length: 1.20-180 m, diameter:
0.5–0.65 m) which are joined together by two ropes keeping them in a
horizontal and steady position, whilst the newer monoventia is re-
presented by polyethylene floats (length: 1.45–1.50 m, diameter:
0.5–0.6 m) joined together by a single rope which keeps the float in a

vertical position. Using up to date photographic evidence, in our study
area we estimated approximately 4443 buoys, of which 1006 were of
the biventia system and 3437 being of the monoventia system.

2.3. Bird surveys

We standardized taxonomic names following the Handbook of the
Birds of the World and BirdLife International (2019).

In order to obtain measurements of bird richness and abundance
(the sum of all species and individuals within a plot in a given event),
we divided our study area into 9 plots with similar biogeochemical and
geomorphological characteristics yet holding different proportions of
buoy types (Fig. 1 and Table S.1). Plots were discerned in the field using
available landmarks and consequently were slightly variable in shape
and size. Bird surveys occurred over 24 months (from July 2016 to June
2018) when we performed monthly counts of bird species and their
relative abundance per plot from a boat, with the aid of two surveyors
(the same people throughout the study period) equipped with bino-
culars (10 × 42) and a camera with a telephoto lens (500 mm). Bird
surveys across each plot occurred on the same day and were mostly in
the afternoon (91.6%, n = 22/24) between 12:00 and 10:00 local time
(CET), and only a few in the morning (8.3%, n = 2/24) between 09:00
and 11:00 CET, spending an equal amount of time (5 min) for each of
the 9 plots when recording species richness and abundance. Bird counts
included all individuals and species standing on buoys or floating on the
water within a given plot. Birds occurring just a few meters outside the
mussel farm were not included in the analyses. Movement between
plots during surveys was carefully considered in order to avoid double-
counts. All the surveys were carried out during calm sea conditions
(average wind speed between 2.5 and 6.6 m/s) and fine weather
(average air temperature 4–25 °C, atmospheric pressure between
1012.3 and 1026.7; MAMBO-1, OGS).

2.4. Statistical analysis

We modelled monthly estimates (n = 24) of abundance and rich-
ness within each plot (n = 9) as a function of i) proportion of buoy type
(expressed as the proportional value of biventia relative to the total
number of buoys in a given plot and included as linear term); ii) the
sum of all buoys within a plot (linear); iii) plot size (linear); iv) tidal
range (CNR-ISMAR, calculated as per Stravisi and Purga, 1997; linear
and quadratic term); and v) time of day (transformed in proportional
values as minutes after midnight; linear and quadratic term). Sea depth,
which can influence bird presence (Sponza et al., 2010), was not in-
cluded as a predictor because it did not differ among plots (one-way
ANOVA: F = 1.932, p = .09, μ = 12.3 m, SE = 0.12). For the analysis
on Mediterranean shag abundance we included only months when the
species is most abundant in our study site which is during the non-
breeding period (June–November; Sponza et al., 2013). All explanatory
variables were standardized (i.e. centred on their mean value and
scaled by their standard deviation) before analysis and models were
tested for within-group collinearity by calculating the variance inflation
factor (VIF) using the package ‘car’ (Fox and Weisberg, 2011). Colli-
nearity between plot size and the proportion of biventia buoys to the
total number of floats per plot was high (VIF > 3, Pearson r = 0.83)
and the former was excluded from the analyses. This effect was highly
expected due to the spatial design of longlines which are positioned
approximately 20 m apart with buoys in the same line being 8-10 m
apart (Sustersic, 2011; COGIUMAR, 2019). Analyses were conducted in
R 3.5.2 environment (R Core Team, 2017) where we built generalized
linear mixed models (GLMMs) with Poisson error distribution and a log
link function to evaluate whether the type of buoy and its relative
abundance, tidal conditions and time of the day influenced patterns of
species richness and abundance as well as species-specific abundances
whilst controlling for the non-independent nature of the survey by
setting each plot and date (Julian date) as random factors (random
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intercept model). To account for a minor overdispersion when model-
ling bird abundance and Mediterranean shag (tested with the package
‘blmeco‘, Körner-Nievergelt et al., 2015), we incorporated in the model
an observation-level random effect following Elston et al. (2001) and
Harrison (2014). For each analyses, we performed a model selection
procedure based on an information-theoretic approach (Burnham and
Anderson, 2002), ranking all possible models within a group according
to the Akaike Information Criterion corrected for small sample sizes
(AICc) using the “dredge” function in the R package ‘MuMIn’ (Barton,
2018) and selecting the most parsimonious models (Δ AICc ≤ 2) whilst
excluding ‘uninformative parameters' (sensu Arnold, 2010). We then
calculated marginal R2 (“R2m”; variance explained by fixed effects
only) and conditional R2 (“R2c”; variance explained also by the random
factor) following Nakagawa and Schielzeth (2013).

3. Results

Between 2016 and 2018 we recorded a total of 5858 birds belonging
to 15 species of which 40% (n = 6) are listed in the Annex I of the
European Birds Directive (2009/147/CE, see Supporting Information for
species list). The most abundant species were Mediterranean shag
(n = 3077), yellow-legged gull (n = 2100), black-headed gull Larus
ridibundus (n = 225) and eider duck Somateria mollissima (n = 60).
Species abundance peaked in the months of September (μ = 508.5,
SE = 133.5) and June (μ = 393, SE = 123) whilst species richness was
highest in January (μ = 10, SE = 0).

As hypothesized, our models suggested a strong and overarching
positive effect of the biventia design and a negative one for monoventia
system across all measures of bird abundance and species richness,
including on the abundances of Mediterranean shag and yellow-legged
gull (Table 1, Fig. 3). The total number of buoys was a marginally

supported variable in the model investigating bird abundance and
Mediterranean shag abundance, although confidence intervals over-
lapped 0. Species richness was negatively correlated with time of the
day, with more species recorded during late morning (10:00–11:00
CET) than late afternoon (18:00 CET). Shag abundance on mussel farms
displayed a linear relationship with time, with higher counts occurring
during late afternoon. We found no effect of tidal range in any of the
analyses performed. Variance explained by both fixed and random ef-
fects was high in most models (bird abundance: R2m = 0.6, R2c = 0.9;
species richness: R2m = 0.2, R2c = 0.3, shag abundance: R2m = 0.6,
R2c = 0.9; yellow-legged gull: R2m = 0.6, R2c = 0.9).

4. Discussion

To our knowledge, this is one of the few works that describes the
biological and ecological value of mussel farms for birds, with a high
proportion of species detected in this study being of international
conservation importance. All analyses revealed an overarching positive
effect of the older biventia design on bird abundance and richness whilst
it was highly negative for the newer monoventia system, thus high-
lighting that the on-going modernization of cultivation methods in our
study site may ultimately have negative consequences for this long-
established seabird community.

The ecological function of longline mussel farms is likely to vary,
depending on the species considered, area investigated, and method
employed but based on our study, we can suggest several mechanisms
as to why birds might be attracted or repelled from these areas. Firstly,
the presence of mussels themselves act directly as food source, parti-
cularly for sea ducks such as eider, a species rarely encountered during
our observations and generally uncommon at this latitude therefore
unlikely to cause considerable economic damage in these systems

Fig. 2. a) the older and rapidly disappearing biventia longline design with floats joined together by two parallel ropes keeping the float in a horizontal position. This is
in contrast to the more recent monoventia longline (b) where buoys are connected by a single rope keeping the float in a vertical position.
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(Perco et al., 1993; Kravos et al., 1999). Interestingly, most of the bird
species detected were predominantly piscivorous (i.e. Mediterranean
shag, terns, grebes, divers) or unable to dive and feed directly on
mussels (i.e. gulls) from the submerged longlines. These high densities
of birds with a predominantly piscivorous diet may be partially ex-
plained by the presence of mussel reefs on longlines which have been

reported to attract higher abundances of fish than adjacent non-farmed
areas, sometimes producing important economic damage due to pre-
dation (Šegvić-Bubić et al., 2011; Barrett et al., 2019). Unfortunately,
due to the lack of surveys in an area without mussel farms, we were not
able to test for this latter hypothesis. However, we can theorize that the
potential losses of piscivorous birds from the areas (i.e. total conversion

Table 1
Top (AICc ≤2) and null models (last row) evaluating drivers of species abundance, richness and species-specific effects on the proportion of biventia buoys, total
number of buoys per plot, tide and time of the survey (linear and quadratic effects). Intercept, beta coefficients and 95% confidence intervals (CI - in brackets) for
fixed effects are shown (in bold are highlighted significant fixed effects where 95% CI do not include zero).

Intercept Biventia buoys Total buoys Tide Tide2 Time Time2 logLik AICc Delta Weight

Species abundance

2.44 (2.01,2.85) 1.22 (0.77,1.68) 0.35 (−0.09,0.81) −796.15 1604.7 0 0.559
2.43 (1.96,2.9) 1.03 (0.59,1.48) −797.45 1605.2 0.49 0.438
2.43 (1.53,3.32) −803.59 1615.4 10.7 0.002

Species richness
0.7 (0.5,0.88) 0.34 (0.15,0.55) −0.11 (−0.19,−0.02) −326.58 661.4 0 0.841
0.7 (0.36,1.02) −333.98 672 10.6 0.003

Mediterranean shag abundance
1.69 (0.95,2.36) 1.89 (1.44,2.74) 0.57 (−0.2,1.35) 0.513 (0.19,0.84) −337.761 690.6 0 0.473
1.68 (0.84,2.44) 1.61 (0.87,2.42) 0.513 (0.19,0.84) −338.923 690.7 0.04 0.465
1.64 (0.01,3.12) −348.38 705.1 14.5 0

Yellow-legged gull abundance
1.81 (1.4,2.18) 0.78 (0.59,1.11) −765.11 1538.4 0 0.991
1.8 (1.01,2.52) −770.84 1547.8 9.4 0.009

Fig. 3. Fitted relationship of the effect of biventia and monoventia floats on bird abundance (a), species richness (b), Mediterranean shag abundance (c) and yellow-
legged gull abundance (d). Due to the variation in the quantity and type of buoy within each plot, we modelled the proportional value of biventia to the total number
of floats (monoventia and biventia). In the horizontal axis, values< 0.5 represent a plot where the majority of buoys are monoventia, while values> 0.5 are plots
holding greater proportions of biventia floats. Other predictors included the total number of buoys within a plot, tidal range, time and day of the survey. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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from biventia to monoventia) may increase economic losses to mussel
farmers as a consequence of higher rates of predation of mussel by fish.
Future studies are needed to confirm the value of birds as biological
controllers of fish in these systems.

A second and stronger mechanism attracting birds to these areas is
linked to the presence of artificial structures. According to our analyses,
positive and negative associations of birds with these structures may be
due to the differences in the design of the two cultivation methods. The
biventia design employs two parallel ropes that keep buoys in a hor-
izontal and stable position offering greater surface and a steady area for
birds to perch. This contrasts with the unsteady, vertical and conically-
shaped floats employed in the monoventia system, where little or no
surface areas is available. Suitable structures, such as the biventia buoys,
have been found to be a valuable roosting sites for many species of
birds, including those that do not feed on the farmed product and
therefore produce no economic damage (Forrest et al., 2007, Bordjan
et al., 2013, Branco et al., 2001, Roycroft et al., 2004, Roycroft et al.,
2007, Forrest et al., 2009, Callier et al., 2018). Apart from Mediterra-
nean shag, other species such as eider duck, yellow-legged gull, cor-
morant Phalacrocorax carbo, black-headed gull Larus ridibundus, Medi-
terranean gull Larus melanocephalus, common gull Larus canus, common
tern Sterna hirundo and Sandwich tern Thalasseus sandvicensis were
observed roosting overnight at our study sites. We also found con-
firmation of this roosting behaviour also from our models in that
Mediterranean shags abundance peaked towards late afternoon when
birds used these structures as roost sites. These findings are consistent
with Bordjan et al. (2013) who observed that Mediterranean shag in
Slovenia roosted almost exclusively on horizontal biventia buoys. Apart
for roosting, birds may also benefit from the floats as platforms to perch
upon for comfort behaviours between foraging events. Roycroft et al.
(2007) noted that various species of Laridae and Phalacrocoracidae use
suspension buoys for maintenance behaviours such as preening, wing-
drying and standing.

The final but fundamental effect is that mussel farms can act as a
type of marine protected area where fishing is not allowed on site and
boat traffic is limited. Human disturbance, which around our study area
consists of recreational, commercial and fishing boat traffic and activ-
ities, is likely to reduce patterns of foraging activity, leading to a dis-
placement of birds from optimal to suboptimal areas and ultimately
impacting on various species' energy balance. For example, great cor-
morants flying off their nests as a consequence of an anthropogenic
disturbance effect, entailed an additional consumption of 23 g fish per
bird or ca. 23 kg per disturbance event for a typical colony (Grémillet
et al., 1995). In Spain, boat disturbance caused European shags to ex-
hibit a characteristic avoidance behaviour that resulted in a substantial
reduction in foraging activity as levels of boat use increased (Velando
and Munilla, 2011).

Our study area is subjected to rapid modernization in mussel
farming methods, favouring more economically viable systems (i.e.
monoventia). Between 1997 and 2019 more than half of all the biventia
longlines (and associated floats) were replaced by the newer monoventia
systems which is now the dominant method. We believe that this
change, coupled with the strongly positive association of seabirds with
the biventia system, may ultimately cause important losses of biodi-
versity locally and at wider scale. One of our study species of important
conservation value, the Mediterranean shag, breeds in Croatia and
migrates to the Gulf of Trieste to spend here the post-breeding period
here (Sponza et al., 2010). These movements within the Adriatic began
in the 1980s and since then they have increased consistently over time,
peaking around 2011–2012 with estimates ranging from 6000 to
10,000 individuals (Škornik et al., 2011), representing 20–33% of the
total non-breeding population (Wetlands International, 2004). Reasons
behind this change in behaviour have been attributed to overfishing
around the Croatian breeding areas (Sponza et al., 2013), the presence
of suitable foraging areas in the Gulf of Trieste (Sponza et al., 2010;
Cosolo et al., 2011) and the development of biventia longline mussel

farms that have allowed the establishment of undisturbed roosts of this
species along the otherwise highly populated coast of the Gulf of Trieste
(Koce, 2018). We estimated that ca. 80% of the current population in
the Gulf of Trieste (ca. 3.000 individuals; Sponza et al., 2013), roosts on
biventia buoys (Utmar et al., 2018).

Future mussel farming plans in our study area are aiming at a total
replacement of the biventia systems in favour of the monoventia one,
thus leading to a potential disruption in long-established behavioural
patterns and ultimately driving important losses of seabird populations
at both a local and a European level. Alternative roosting habitats are
likely to be a limiting factor in our study area, as alternative nearby
areas are densely populated with few undisturbed sites available.
Suitable floating structures are becoming valuable refuge areas for
marine and costal species threatened by habitat loss due to the process
of urbanization, climate change (i.e. sea level rise), erosion, subsidence
and seawater ingress. In response to these threats, international con-
servation organisations are promoting a series of world-first trials
aimed at providing alternatives roosting habitats for when other natural
roosts may be submerged or inappropriate (i.e. Birdlife Australia,
2019). Negative impacts may not only include losses of biodiversity but
also to economic ones, assuming the potential role of piscivorous birds
as predators of fish species causing economical damage at mussel farms.
If such modernization process must occur, future studies should be
targeted to study the implementation of supplementary floating struc-
tures to compensate for the detrimental effects of losing the biventia
system for this long-established seabird community. Given that mussel
farms are a fast-growing feature worldwide, such changes are likely to
occur unnoticed elsewhere in the world, as little information is gen-
erally available on this topic. To our knowledge, dedicated seabird
surveys in these systems are scarce at global level and, as for our case,
may harbour, important species of conservation concern.
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