657 research outputs found

    Self-trapping transition for nonlinear impurities embedded in a Cayley tree

    Full text link
    The self-trapping transition due to a single and a dimer nonlinear impurity embedded in a Cayley tree is studied. In particular, the effect of a perfectly nonlinear Cayley tree is considered. A sharp self-trapping transition is observed in each case. It is also observed that the transition is much sharper compared to the case of one-dimensional lattices. For each system, the critical values of χ\chi for the self-trapping transitions are found to obey a power-law behavior as a function of the connectivity KK of the Cayley tree.Comment: 6 pages, 7 fig

    Resonance Effects in the Nonadiabatic Nonlinear Quantum Dimer

    Full text link
    The quantum nonlinear dimer consisting of an electron shuttling between the two sites and in weak interaction with vibrations, is studied numerically under the application of a DC electric field. A field-induced resonance phenomenon between the vibrations and the electronic oscillations is found to influence the electronic transport greatly. For initially delocalization of the electron, the resonance has the effect of a dramatic increase in the transport. Nonlinear frequency mixing is identified as the main mechanism that influences transport. A characterization of the frequency spectrum is also presented.Comment: 7 pages, 6 figure

    A simple example of "Quantum Darwinism": Redundant information storage in many-spin environments

    Full text link
    As quantum information science approaches the goal of constructing quantum computers, understanding loss of information through decoherence becomes increasingly important. The information about a system that can be obtained from its environment can facilitate quantum control and error correction. Moreover, observers gain most of their information indirectly, by monitoring (primarily photon) environments of the "objects of interest." Exactly how this information is inscribed in the environment is essential for the emergence of "the classical" from the quantum substrate. In this paper, we examine how many-qubit (or many-spin) environments can store information about a single system. The information lost to the environment can be stored redundantly, or it can be encoded in entangled modes of the environment. We go on to show that randomly chosen states of the environment almost always encode the information so that an observer must capture a majority of the environment to deduce the system's state. Conversely, in the states produced by a typical decoherence process, information about a particular observable of the system is stored redundantly. This selective proliferation of "the fittest information" (known as Quantum Darwinism) plays a key role in choosing the preferred, effectively classical observables of macroscopic systems. The developing appreciation that the environment functions not just as a garbage dump, but as a communication channel, is extending our understanding of the environment's role in the quantum-classical transition beyond the traditional paradigm of decoherence.Comment: 21 pages, 6 figures, RevTex 4. Submitted to Foundations of Physics (Asher Peres Festschrift

    Tissue Formation and Vascularization in Anatomically Shaped Human Joint Condyle Ectopically in Vivo

    Full text link
    Scale-up of bioengineered grafts toward clinical applications is a challenge in regenerative medicine. Here, we report tissue formation and vascularization of anatomically shaped human tibial condyles ectopically with a dimension of 20 15 15mm3. A composite of poly-ɛ-caprolactone and hydroxyapatite was fabricated using layer deposition of three-dimensional interlaid strands with interconnecting microchannels (400μm) and seeded with human bone marrow stem cells (hMSCs) with or without osteogenic differentiation. An overlaying layer (1mm deep) of poly(ethylene glycol)-based hydrogel encapsulating hMSCs or hMSC-derived chondrocytes was molded into anatomic shape and anchored into microchannels by gel infusion. After 6 weeks of subcutaneous implantation in athymic rats, hMSCs generated not only significantly more blood vessels, but also significantly larger-diameter vessels than hMSC-derived osteoblasts, although hMSC-derived osteoblasts yielded mineralized tissue in microchannels. Chondrocytes in safranin-O-positive glycosaminoglycan matrix were present in the cartilage layer seeded with hMSC-derived chondrogenic cells, although significantly more cells were present in the cartilage layer seeded with hMSCs than hMSC-derived chondrocytes. Together, MSCs elaborate substantially more angiogenesis, whereas their progenies yield corresponding differentiated tissue phenotypes. Scale up is probable by incorporating a combination of stem cells and their progenies in repeating modules of internal microchannels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78100/1/ten.tea.2008.0653.pd

    Properties of layer-by-layer vector stochastic models of force fluctuations in granular materials

    Full text link
    We attempt to describe the stress distributions of granular packings using lattice-based layer-by-layer stochastic models that satisfy the constraints of force and torque balance and non-tensile forces at each site. The inherent asymmetry in the layer-by-layer approach appears to lead to an asymmetric force distribution, in disagreement with both experiments and general symmetry considerations. The vertical force component probability distribution is robust and in agreement with predictions of the scalar q model while the distribution of horizontal force components is qualitatively different and depends on the details of implementation.Comment: 18 pages, 12 figures (with subfigures), 1 table. Uses revtex, epsfig,subfigure, and cite. Submitted to PRE. Plots have been bitmapped. High-resolution version is available. Email [email protected] or download from http://rainbow.uchicago.edu/~mbnguyen/research/vm.htm

    Simple method for excitation of a Bose-Einstein condensate

    Full text link
    An appropriate, time-dependent modification of the trapping potential may be sufficient to create effectively collective excitations in a cold atom Bose-Einstein condensate. The proposed method is complementary to earlier suggestions and should allow the creation of both dark solitons and vortices.Comment: 8 pages, 7 figures, version accepted for publication in Phys. Rev.

    Tilapia male urinary pheromone stimulates female reproductive axis

    Get PDF
    Mozambique tilapia males congregate in leks where they establish dominance hierarchies and attract females to spawn in sandy pits. Dominant males store more urine than subordinates and the pattern of urination and the high sensitivity of females to male urine suggest chemical signalling via the urine. Here we show that pre-ovulated and post-spawn females when exposed to dominant male urine increased significantly, in less than 1 h, the release rate of the maturation-inducing steroid 17,20bdihydroxypregn- 4-en-3-one which is maintained elevated for at least 6 h. This indicates a pheromonal role for male urine in the synchronisation of spawning. Furthermore, we show that the lack of affinity of 17,20bP to sex steroid binding globulin explains, at least partly, its rapid release and lack of detection in the blood. Thus tilapia urine involvement in several communication processes confirms that cichlids have evolved a sophisticated chemical signalling system together with their complex visual, acoustic and behavioural displays

    Recent glitches detected in the Crab pulsar

    Full text link
    From 2000 to 2010, monitoring of radio emission from the Crab pulsar at Xinjiang Observatory detected a total of nine glitches. The occurrence of glitches appears to be a random process as described by previous researches. A persistent change in pulse frequency and pulse frequency derivative after each glitch was found. There is no obvious correlation between glitch sizes and the time since last glitch. For these glitches Δνp\Delta\nu_{p} and Δν˙p\Delta\dot{\nu}_{p} span two orders of magnitude. The pulsar suffered the largest frequency jump ever seen on MJD 53067.1. The size of the glitch is \sim 6.8 ×106\times 10^{-6} Hz, \sim 3.5 times that of the glitch occured in 1989 glitch, with a very large permanent changes in frequency and pulse frequency derivative and followed by a decay with time constant \sim 21 days. The braking index presents significant changes. We attribute this variation to a varying particle wind strength which may be caused by glitch activities. We discuss the properties of detected glitches in Crab pulsar and compare them with glitches in the Vela pulsar.Comment: Accepted for publication in Astrophysics & Space Scienc

    Identify of a tilapia pheromone released by dominant males that primes females for reproduction

    Get PDF
    Knowledge of the chemical identity and role of urinary pheromones in fish is scarce, yet necessary to understand the integration of multiple senses in adaptive responses and the evolution of chemical communication. In nature, Mozambique tilapia (Oreochromis mossambicus) males form hierarchies and females mate preferentially with dominant territorial males which they visit in aggregations or leks

    Tunneling of quantum rotobreathers

    Full text link
    We analyze the quantum properties of a system consisting of two nonlinearly coupled pendula. This non-integrable system exhibits two different symmetries: a permutational symmetry (permutation of the pendula) and another one related to the reversal of the total momentum of the system. Each of these symmetries is responsible for the existence of two kinds of quasi-degenerated states. At sufficiently high energy, pairs of symmetry-related states glue together to form quadruplets. We show that, starting from the anti-continuous limit, particular quadruplets allow us to construct quantum states whose properties are very similar to those of classical rotobreathers. By diagonalizing numerically the quantum Hamiltonian, we investigate their properties and show that such states are able to store the main part of the total energy on one of the pendula. Contrary to the classical situation, the coupling between pendula necessarily introduces a periodic exchange of energy between them with a frequency which is proportional to the energy splitting between quasi-degenerated states related to the permutation symmetry. This splitting may remain very small as the coupling strength increases and is a decreasing function of the pair energy. The energy may be therefore stored in one pendulum during a time period very long as compared to the inverse of the internal rotobreather frequency.Comment: 20 pages, 11 figures, REVTeX4 styl
    corecore