131 research outputs found
Urinary ATP and visualization of intracellular bacteria: a superior diagnostic marker for recurrent UTI in renal transplant recipients?
Renal transplant recipients (RTR) are highly susceptible to urinary tract infections (UTIs) with over 50% of patients having at least one UTI within the first year. Yet it is generally acknowledged that there is considerable insensitivity and inaccuracy in routine urinalysis when screening for UTIs. Thus a large number of transplant patients with genuine urine infections may go undiagnosed and develop chronic recalcitrant infections, which can be associated with graft loss and morbidity. Given a recent study demonstrating ATP is released by urothelial cells in response to bacteria exposure, possibly acting at metabotropic P2Y receptors mediating a proinflammatory response, we have investigated alternative, and possibly more appropriate, urinalysis techniques in a cohort of RTRs.Mid-stream urine (MSU) samples were collected from 53 outpatient RTRs. Conventional leukocyte esterase and nitrite dipstick tests, and microscopic pyuria counts (in 1 ?l), ATP concentration measurements, and identification of intracellular bacteria in shed urothelial cells, were performed on fresh unspun samples and compared to ‘gold-standard’ bacterial culture results.Of the 53 RTRs, 22% were deemed to have a UTI by ‘gold-standard’ conventional bacteria culture, whereas 87%, 8% and 4% showed evidence of UTIs according to leukocyte esterase dipstick, nitrite dipstick, and a combination of both dipsticks, respectively. Intracellular bacteria were visualized in shed urothelial cells of 44% of RTRs, however only 1 of the 23 RTRs (44%) was deemed to have a UTI by conventional bacteria culture. A significant association of the ‘gold-standard’ test with urinary ATP concentration combined with visualization of intracellular bacteria in shed urothelial cells was determined using the Fisher’s exact test.It is apparent that standard bedside tests for UTIs give variable results and that seemingly quiescent bacteria in urothelial cells are very common in RTRs and may represent a focus of subclinical infection. Furthermore, our results suggest urinary ATP concentration combined with detection of intracellular bacteria in shed urinary epithelial cells may be a sensitive means by which to detect ‘occult’ infection in RTRs
Inflammatory mediators act at renal pericytes to elicit contraction of vasa recta and reduce pericyte density along the kidney medullary vascular network
Introduction: Regardless of initiating cause, renal injury promotes a potent pro-inflammatory environment in the outer medulla and a concomitant sustained decrease in medullary blood flow (MBF). This decline in MBF is believed to be one of the critical events in the pathogenesis of acute kidney injury (AKI), yet the precise cellular mechanism underlying this are still to be fully elucidated. MBF is regulated by contractile pericyte cells that reside on the descending vasa recta (DVR) capillaries, which are the primary source of blood flow to the medulla. Methods: Using the rat and murine live kidney slice models, we investigated the acute effects of key medullary inflammatory mediators TNF-α, IL-1β, IL-33, IL-18, C3a and C5a on vasa recta pericytes, the effect of AT1-R blocker Losartan on pro-inflammatory mediator activity at vasa recta pericytes, and the effect of 4-hour sustained exposure on immunolabelled NG2+ pericytes. Results and discussion: Exposure of rat and mouse kidney slices to TNF-α, IL-18, IL-33, and C5a demonstrated a real-time pericyte-mediated constriction of DVR. When pro-inflammatory mediators were applied in the presence of Losartan the inflammatory mediator-mediated constriction that had previously been observed was significantly attenuated. When live kidney slices were exposed to inflammatory mediators for 4-h, we noted a significant reduction in the number of NG2+ positive pericytes along vasa recta capillaries in both rat and murine kidney slices. Data collected in this study demonstrate that inflammatory mediators can dysregulate pericytes to constrict DVR diameter and reduce the density of pericytes along vasa recta vessels, further diminishing the regulatory capacity of the capillary network. We postulate that preliminary findings here suggest pericytes play a role in AKI
Simultaneous quantification of 12 different nucleotides and nucleosides released from renal epithelium and in human urine samples using ion-pair reversed-phase HPLC
Nucleotides and nucleosides are not only involved in cellular metabolism but also act extracellularly via P1 and P2 receptors, to elicit a wide variety of physiological and pathophysiological responses through paracrine and autocrine signalling pathways. For the first time, we have used an ion-pair reversed-phase high-performance liquid chromatography ultraviolet (UV)-coupled method to rapidly and simultaneously quantify 12 different nucleotides and nucleosides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, adenosine, uridine triphosphate, uridine diphosphate, uridine monophosphate, uridine, guanosine triphosphate, guanosine diphosphate, guanosine monophosphate, guanosine): (1) released from a mouse renal cell line (M1 cortical collecting duct) and (2) in human biological samples (i.e., urine). To facilitate analysis of urine samples, a solid-phase extraction step was incorporated (overall recovery rate ? 98 %). All samples were analyzed following injection (100 ?l) into a Synergi Polar-RP 80 Å (250 × 4.6 mm) reversed-phase column with a particle size of 10 ?m, protected with a guard column. A gradient elution profile was run with a mobile phase (phosphate buffer plus ion-pairing agent tetrabutylammonium hydrogen sulfate; pH 6) in 2-30 % acetonitrile (v/v) for 35 min (including equilibration time) at 1 ml min(-1) flow rate. Eluted compounds were detected by UV absorbance at 254 nm and quantified using standard curves for nucleotide and nucleoside mixtures of known concentration. Following validation (specificity, linearity, limits of detection and quantitation, system precision, accuracy, and intermediate precision parameters), this protocol was successfully and reproducibly used to quantify picomolar to nanomolar concentrations of nucleosides and nucleotides in isotonic and hypotonic cell buffers that transiently bathed M1 cells, and urine samples from normal subjects and overactive bladder patients
Urinary ATP as an indicator of infection and inflammation of the urinary tract in patients with lower urinary tract symptoms
BACKGROUND:
Adenosine-5'-triphosphate (ATP) is a neurotransmitter and inflammatory cytokine implicated in the pathophysiology of lower urinary tract disease. ATP additionally reflects microbial biomass thus has potential as a surrogate marker of urinary tract infection (UTI). The optimum clinical sampling method for ATP urinalysis has not been established. We tested the potential of urinary ATP in the assessment of lower urinary tract symptoms, infection and inflammation, and validated sampling methods for clinical practice.
METHODS:
A prospective, blinded, cross-sectional observational study of adult patients presenting with lower urinary tract symptoms (LUTS) and asymptomatic controls, was conducted between October 2009 and October 2012. Urinary ATP was assayed by a luciferin-luciferase method, pyuria counted by microscopy of fresh unspun urine and symptoms assessed using validated questionnaires. The sample collection, storage and processing methods were also validated.
RESULTS:
75 controls and 340 patients with LUTS were grouped as without pyuria (n = 100), pyuria 1-9 wbc ?l(-1) (n = 120) and pyuria ?10 wbc ?l(-1) (n = 120). Urinary ATP was higher in association with female gender, voiding symptoms, pyuria greater than 10 wbc ?l(-1) and negative MSU culture. ROC curve analysis showed no evidence of diagnostic test potential. The urinary ATP signal decayed with storage at 23°C but was prevented by immediate freezing at ??-20°C, without boric acid preservative and without the need to centrifuge urine prior to freezing.
CONCLUSIONS:
Urinary ATP may have a role as a research tool but is unconvincing as a surrogate, clinical diagnostic marker
Identification of 4-amino-thieno[2,3-d]pyrimidines as QcrB inhibitors in Mycobacterium tuberculosis
Antibiotic resistance is a global crisis that threatens our ability to treat bacterial infections, such as tuberculosis, caused b
Inhibition of native 5-HT3 receptor-evoked contractions in Guinea pig and mouse ileum by antimalarial drugs
Quinine, Chloroquine and mefloquine are commonly used to treat malaria; however with associated gastrointestinal (GI) side-effects. These drugs act as antagonists at recombinant 5-HT3 receptors and modulate gut peristalsis. These gastrointestinal side effects may be the result of antagonism at intestinal 5-HT3 receptors. Ileum from male C57BL/6 mice and guinea pigs was mounted longitudinally in organ baths. Concentration-response curves for 5-HT and the selective 5-HT3 agonist 2-Me-5-HT were obtained with 5-HT (pEC50=7.57±0.33, 12) more potent (P=0.004) than 2-Me-5-HT (pEC50=5.45±0.58, n=5) in mouse ileum. There was no difference in potency of 5-HT (pEC50=5.42±0.15, n=8) and 2-Me-5-HT (pIC50=5.01±0.55, n=11) in guinea pig ileum (P>0.05). Quinine, Chloroquine or mefloquine was applied for 10 min and inhibitions prior to submaximal agonist application. In mouse ileum, quinine, chloroquine and mefloquine antagonised 5-HT-induced contractions (pIC50=4.9±0.17, n=7; 4.76±0.14,n=5; 6.21±0.2, n=4, respectively) with mefloquine most potent (P<0.05). Quinine, chloroquine and mefloquine antagonised 2-me-5-HT-induced contractions (pIC50=6.35±0.11,n=8; 4.64±0.2, n=7; 5.11± 0.22, n=6, respectively) with quinine most potent (P<0.05). In guinea-pig ileum, quinine, chloroquine and mefloquine antagonised 5-HT-induced contractions (pIC50=5.02±0.15, n=6; 4.54±0.1, n=7; 5.32±0.13, n=5, respectively) and 2-me-5-HT-induced contractions (pIC50=4.62±0.25, n=5; 4.56±0.14, n=6; 5.67±0.12, n=4, respectively) with chloroquine least potent against 5-HT and mefloquine most potent against 2-me-5-HT (P<0.05). These results support previous studies identifying anti-malarial drugs as antagonists at recombinant 5-HT3 receptors and may also demonstrate the ability of these drugs to influence native 5-HT3 receptor-evoked contractile responses which may account for their associated GI side-effects
Self-management intervention to reduce pulmonary exacerbations by supporting treatment adherence in adults with cystic fibrosis: a randomised controlled trial
Introduction Recurrent pulmonary exacerbations lead to progressive lung damage in cystic fibrosis (CF). Inhaled medications (mucoactive agents and antibiotics) help prevent exacerbations, but objectively measured adherence is low. We investigated whether a multi-component (complex) self-management intervention to support adherence would reduce exacerbation rates over 12 months. Methods Between October 2017 and May 2018, adults with CF (aged ≥16 years; 19 UK centres) were randomised to the intervention (data-logging nebulisers, a digital platform and behavioural change sessions with trained clinical interventionists) or usual care (data-logging nebulisers). Outcomes included pulmonary exacerbations (primary outcome), objectively measured adherence, body mass index (BMI), lung function (FEV1) and Cystic Fibrosis Questionnaire-Revised (CFQ-R). Analyses were by intent to treat over 12 months. Results Among intervention (n=304) and usual care (n=303) participants (51% female, median age 31 years), 88% completed 12-month follow-up. Mean exacerbation rate was 1.63/year with intervention and 1.77/year with usual care (adjusted ratio 0.96; 95% CI 0.83 to 1.12; p=0.64). Adjusted mean differences (95% CI) were in favour of the intervention versus usual care for objectively measured adherence (9.5% (8.6% to 10.4%)) and BMI (0.3 (0.1 to 0.6) kg/m2), with no difference for %FEV1 (1.4 (−0.2 to 3.0)). Seven CFQ-R subscales showed no between-group difference, but treatment burden reduced for the intervention (3.9 (1.2 to 6.7) points). No intervention-related serious adverse events occurred. Conclusions While pulmonary exacerbations and FEV1 did not show statistically significant differences, the intervention achieved higher objectively measured adherence versus usual care. The adherence difference might be inadequate to influence exacerbations, though higher BMI and lower perceived CF treatment burden were observed
Altered urothelial ATP signaling in a major subset of human overactive bladder patients with pyuria
Overactive Bladder (OAB) is an idiopathic condition, characterized by urgency, urinary frequency, and urgency incontinence, in the absence of routinely traceable urinary infection. We have described microscopic pyuria (?10 wbc/?l) in patients suffering from the worst symptoms. It is established that inflammation is associated with increased ATP release from epithelial cells, and extracellular ATP originating from the urothelium following increased hydrostatic pressure is a mediator of bladder sensation. Here, using bladder biopsy samples, we have investigated urothelial ATP signaling in OAB patients with microscopic pyuria. Basal, but not stretch-evoked, release of ATP was significantly greater from the urothelium of OAB patients with pyuria than from non-OAB patients or OAB patients without pyuria (<10 wbc/?l). Basal ATP release from the urothelium of OAB patients with pyuria was inhibited by the P2 receptor antagonist suramin and abolished by the hemichannel blocker carbenoxolone, which differed from stretch-activated ATP release. Altered P2 receptor expression was evident in the urothelium from pyuric OAB patients. Furthermore, intracellular bacteria were visualized in shed urothelial cells from ?80% of OAB patients with pyuria. These data suggest that increased ATP release from the urothelium, involving bacterial colonization, may play a role in the heightened symptoms associated with pyuric OAB patients
- …