1,920 research outputs found

    Natural variability in a stable, 1000-yr global coupled climate-carbon cycle simulation

    Get PDF
    Author Posting. © American Meteorological Society 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 19 (2006): 3033–3054, doi:10.1175/JCLI3783.1.A new 3D global coupled carbon–climate model is presented in the framework of the Community Climate System Model (CSM-1.4). The biogeochemical module includes explicit land water–carbon coupling, dynamic carbon allocation to leaf, root, and wood, prognostic leaf phenology, multiple soil and detrital carbon pools, oceanic iron limitation, a full ocean iron cycle, and 3D atmospheric CO2 transport. A sequential spinup strategy is utilized to minimize the coupling shock and drifts in land and ocean carbon inventories. A stable, 1000-yr control simulation [global annual mean surface temperature ±0.10 K and atmospheric CO2 ± 1.2 ppm (1σ)] is presented with no flux adjustment in either physics or biogeochemistry. The control simulation compares reasonably well against observations for key annual mean and seasonal carbon cycle metrics; regional biases in coupled model physics, however, propagate clearly into biogeochemical error patterns. Simulated interannual-to-centennial variability in atmospheric CO2 is dominated by terrestrial carbon flux variability, ±0.69 Pg C yr−1 (1σ global net annual mean), which in turn reflects primarily regional changes in net primary production modulated by moisture stress. Power spectra of global CO2 fluxes are white on time scales beyond a few years, and thus most of the variance is concentrated at high frequencies (time scale 20 yr), global net ocean CO2 flux is strongly anticorrelated (0.7–0.95) with the net CO2 flux from land; the ocean tends to damp (20%–25%) slow variations in atmospheric CO2 generated by the terrestrial biosphere. The intrinsic, unforced natural variability in land and ocean carbon storage is the “noise” that complicates the detection and mechanistic attribution of contemporary anthropogenic carbon sinks.This work was supported by NCAR, NSF ATM-9987457, NASA EOS-IDS Grant NAG5-9514, NASA Carbon Cycle Program Grant NAG5-11200, Lawrence Berkeley National Laboratory LDRD, and the WHOI Ocean and Climate Change Institute

    Use of graphene as protection film in biological environments

    Get PDF
    Corrosion of metal in biomedical devices could cause serious health problems to patients. Currently ceramics coating materials used in metal implants can reduce corrosion to some extent with limitations. Here we proposed graphene as a biocompatible protective film for metal potentially for biomedical application. We confirmed graphene effectively inhibits Cu surface from corrosion in different biological aqueous environments. Results from cell viability tests suggested that graphene greatly eliminates the toxicity of Cu by inhibiting corrosion and reducing the concentration of Cu(2+) ions produced. We demonstrated that additional thiol derivatives assembled on graphene coated Cu surface can prominently enhance durability of sole graphene protection limited by the defects in graphene film. We also demonstrated that graphene coating reduced the immune response to metal in a clinical setting for the first time through the lymphocyte transformation test. Finally, an animal experiment showed the effective protection of graphene to Cu under in vivo condition. Our results open up the potential for using graphene coating to protect metal surface in biomedical application

    Adult respiratory distress syndrome secondary to end-stage liver disease—successful outcome following liver transplantation

    Get PDF
    The adult respiratory distress syndrome (ARDS) com­plicating liver failure carries a 100% mortality. Two cases of ARDS that resolved following liver transplantation have been reported, one associated with acute allograft rejection, and the second due to sepsis. There is, however, a great reluctance to transplant these very-high-risk patients. We report the first series of patients with ARDS secondary to liver failure who successfully underwent OLTX. No patient had sepsis or pneumonia. Posttransplant mechanical ventilation was required for a median of 14 days (range 6-37 days). All patients in this series are alive and well, with a follow-up of 6-15 months. This demonstrates that ARDS associated with liver failure, an otherwise uniformly lethal complica­tion, can respond dramatically to OLTX. © 1993 by William & Wilkins

    Efficacy and safety during extended treatment of lesinurad in combination with febuxostat in patients with tophaceous gout: CRYSTAL extension study

    Get PDF
    Abstract Background In gout, long-term urate-lowering therapy (ULT) promotes dissolution of tissue urate crystal deposits. However, no studies using combined xanthine oxidase inhibition and uricosuric ULT have focused on clinical outcomes or adverse events (AEs) beyond 12 months of therapy. Our objective in the present study was to examine efficacy and long-term safety in patients with tophaceous gout receiving febuxostat plus lesinurad as combination therapy. Methods Patients receiving combined lesinurad and febuxostat in the 12-month core CRYSTAL study continued at the same doses in the extension study (“200CONT”, “400CONT”), whereas those receiving only febuxostat 80 mg were randomized to lesinurad 200 or 400 mg with febuxostat (“200CROSS”, “400CROSS”). The primary endpoint was the proportion of patients experiencing complete resolution (CR) of at least one target tophus by extension month (EM) 12. The key secondary endpoint was mean rate of gout flares requiring treatment from the end of EM 2 to the end of EM 12. Secondary endpoints included reduction in the sum of areas for all target tophi. Safety assessments included AEs and laboratory data for the entire extension study (median length of lesinurad exposure, 800 days). Results Of 235 patients completing the core study, 196 (83.4%) enrolled in the extension: 200CONT (n = 64), 200CROSS (n = 33), 400CONT (n = 65), and 400CROSS (n = 34). At EM 12, 59.6%, 43.5%, 66.7%, and 50.0% of patients, respectively, had CR of at least one target tophus. The sum of areas for all target tophi was reduced by 76.4%, 58.1%, 77.5%, and 62.8%, respectively. The adjusted mean (SE) rates of gout flares requiring treatment from the end of EM 2 to the end of EM 12 were 0.6 (0.19), 1.3 (0.48), 0.2 (0.08), and 1.9 (0.93), respectively. Target sUA < 5.0 mg/dl was achieved by 77.1%, 79.2%, 88.5%, and 71.4% of patients, respectively. Exposure-adjusted incidence rates of treatment-emergent adverse events (TEAEs) and renal-related TEAEs in the core study were not increased with prolonged lesinurad exposure in the extension study. Conclusions Patients receiving lesinurad plus febuxostat therapy for 2 years continued to be at sUA target. Patients exhibited a progressive increase in CR of at least one target tophus, progressive reduction in tophus size, and reduction of gout flares requiring treatment over the second year, with AEs consistent with those observed in the core study. Trial registration ClinicalTrials.gov , NCT01510769 . Registered on 13 January 2012.https://deepblue.lib.umich.edu/bitstream/2027.42/146783/1/13075_2018_Article_1788.pd

    Climate-mediated changes to mixed-layer properties in the Southern Ocean : assessing the phytoplankton response

    Get PDF
    © 2008 Author(s). This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 5 (2008): 847-864, doi:10.5194/bg-5-847-2008Concurrent changes in ocean chemical and physical properties influence phytoplankton dynamics via alterations in carbonate chemistry, nutrient and trace metal inventories and upper ocean light environment. Using a fully coupled, global carbon-climate model (Climate System Model 1.4-carbon), we quantify anthropogenic climate change relative to the background natural interannual variability for the Southern Ocean over the period 2000 and 2100. Model results are interpreted using our understanding of the environmental control of phytoplankton growth rates – leading to two major findings. Firstly, comparison with results from phytoplankton perturbation experiments, in which environmental properties have been altered for key species (e.g., bloom formers), indicates that the predicted rates of change in oceanic properties over the next few decades are too subtle to be represented experimentally at present. Secondly, the rate of secular climate change will not exceed background natural variability, on seasonal to interannual time-scales, for at least several decades – which may not provide the prevailing conditions of change, i.e. constancy, needed for phytoplankton adaptation. Taken together, the relatively subtle environmental changes, due to climate change, may result in adaptation by resident phytoplankton, but not for several decades due to the confounding effects of climate variability. This presents major challenges for the detection and attribution of climate change effects on Southern Ocean phytoplankton. We advocate the development of multi-faceted tests/metrics that will reflect the relative plasticity of different phytoplankton functional groups and/or species to respond to changing ocean conditions.S.C.D. was supported in part by the WHOI Ocean and Climate Change Institute and a grant from the National Science Foundation (NSF ATM06-28582). Computational resources were provided by the NCAR Climate Simulation Laboratory. The National Center for Atmospheric Research is sponsored by the US National Science Foundation. P.W.B. was supported by the NZ FRST Coasts and Oceans OBI
    corecore