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Abstract

Theory and empirical evidence suggest that the term structure of interest rates reflects risk premiums
as well as market expectations about future inflation and real interest rates. We propose an approach
to extracting such premiums and expectations by exploiting both the comovements among interest
rates across the yield curve and between two countries, Canada and the United States. This approach
involves estimating a multi-factor affine-yield model jointly for the two countries, in which we
identify a common factor as representing real rate expectations and two other factors as representing
two separate inflation expectations for the two countries. To estimate the model, we apply a Kalman
filter to monthly data on zero-coupon bond yields for two-year, five-year and 10-year maturities as
well as inflation. Our estimates suggest that Canadian inflation expectations were slow to adjust to a
new inflation-targeting regime. We also find inflation-risk premiums that vary between 10 and 90
basis points in the two countries, with US bonds commanding smaller premiums.
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1. Introduction

If the term structure of interest rates reflects market expectations and risks about future inflation and
real interest rates, the recovery of such information would be useful for the conduct of monetary
policy and the assessment of central bank credibility. In this paper, we propose an approach to
extracting information about inflation expectations and inflation-risk premiums by exploiting both the
comovements among interest rates across the yield curve and the comovements among those interest
rates between two countries, Canada and the United States.

The most difficult challenge in modelling the yield curve has been taking account of time-varying risk
premiums. Attempts to extract expectations from the yield curve [e.g. Fama (1990) and Mishkin
(1990)] find that variations in term premiums obscure those expectations. Shiller, Campbell, and
Schoenholtz (1983), Fama (1984) and Keim and Stambaugh (1986) establish the presence of such
premiums in US bond returns. Engle, Lilien and Robins (1987) fit an ARCH-M model to interest rate
data and find a highly significant risk premium associated with conditional volatility. Tzavalis and
Wickens (1997) show that allowing for such risk premiums can help reconcile the expectations
hypothesis with the data. These studies, however, do not distinguish between real and inflation-risk
premiums.

We model these risk premiums with the following considerations: (1) the premiums should derive
from the pricing of an explicitly specified risk; (2) they should satisfy the equilibrium condition of no
arbitrage; and (3) they should be related to expectations about fundamentals. The challenge is to
account for such risk premiums and to estimate inflation expectations by means of the simplest
possible term-structure model. Gong and Remolona (1997b) construct a two-factor affine term
structure model to estimate the inflation-risk premium in the United States that satisfies the above-
mentioned considerations. In the model, risks arise because of revisions in expectations and the model
assumes that these risks are priced by the bond market. By identifying the two factors as relating to
inflation and real rate expectations, they obtain separate estimates of the inflation and real risk
premiums that are time varying because of square-root heteroskedastic shocks to the factors. The
model has some success in capturing inflation expectations and producing reasonable risk premiums.

For a small-open economy like Canada, it is important to take into account the fact that its bond yields
are strongly influenced by international financial markets, in particular, the US bond market. As a
result, one would like to explicitly consider the close link between Canadian and US bond yields. In
this paper, we extend the two-factor affine-yield model in Gong and Remolona to a two-country
setting by estimating the model jointly for Canada and the United States. In the model, yields in each
country are determined by two unobserved (latent) factors. We attempt to identify one of the factors as
an inflation factor that represents inflation expectations and the other as a real factor representing
expectations about real fundamentals. Since the factors are unobserved, one important question is:
How to identify the factors?

In Gong and Remolona (1997b) and Jegadeesh and Pennacchi (1996), the inflation process is used to
identify the inflation factor by empirically implementing a link between the term structure and
observed inflation rates. Remolona, Wickens and Gong (1998) use index-linked zero-coupon bond
yields for the United Kingdom to identify the perceived real rate process, thus allowing them to extract
the perceived inflation process from the nominal yields. In Fung and Remolona (1998), the factors are
identified by the assumption that the inflation factor is specific to each country, representing
independent inflation expectations for the two countries, while the real factor is common to both
countries, representing common real rate expectations.1 The intuition is that a real shock originating in
the United States will also affect Canada or that real shocks originating from outside the two countries
will affect Canada and the United States in a similar way, because of their close economic links.
However, inflation shocks in Canada may differ from those of the United States, because Canada’s
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The idea of a factor common to two countries in an affine model can also be found in Backus, Foreski, and Telmer
(1998) and Ahn (1997). However, neither model attempts to identify the common factor as a real factor and neither uses
the Kalman filter to recover the underlying factors.
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floating exchange rate allows it to pursue an independent monetary policy. Nonetheless, the
assumption of a common real factor in a two-factor model may not be adequate to identify the
underlying factors, especially the US inflation factor because of the economy’s dominant size. In this
paper, we use the observed US inflation process to identify the US inflation factor and thus the US real
factor. The assumption of a common real factor in the two countries then allows us to identify the
Canadian inflation factor.

To estimate the model, we apply a Kalman filter to monthly data on the annualized one-month-ahead
inflation rate and zero-coupon bond yields for two-year, five-year and 10-year maturities. The model’s
arbitrage conditions allow us to focus on interest rate movements that can be accounted for by
consistent expectations processes. Because the model assumes no correlation between inflation and
real rate expectations, we estimate the model only for longer-term yields where such an assumption
can be reasonably justified. The estimation procedure allows us to exploit conditional density of bond
yields without imposing special assumptions on measurement errors. The model’s arbitrage conditions
also serve as over-identifying restrictions. We estimate the model over the period January 1984 to
December 1998. The sample starts after 1983 to avoid a likely change in monetary regime in the
United States in October 1982. Once we obtain the parameter estimates of the model, we can back out
from the model conditional forecasts of the unobserved factors, thus allowing us to conditionally
decompose nominal bond yields into four components: expectations of real rates, real-term premium,
expectations of inflation and inflation- risk premium.

In evaluating the model, we rely on the implications of the parameters for inflation expectations and
risk premiums. Our estimates suggest that Canadian inflation expectations were slow to adjust to a
new inflation-targeting regime. We also find inflation-risk premiums that vary between 10 and 90
basis points in the two countries, with US bonds commanding smaller premiums. The results show
that the model is capable of extracting useful information from the yield curves. This suggests that it is
important to exploit additional information contained in internationally integrated financial markets to
study the term structure, and that the assumption of a common factor and country-specific factors is
plausible.

The rest of the paper is organized as follows. Section 2 presents the two-country two-factor model.
Section 3 discusses the data and estimation. Section 4 reports and discusses the empirical results.
Section 5 concludes and provides suggestions for future research.

2. An affine-yield two-country, two-risk, two-factor model

2.1 The affine class of term structure models

The term structure model that we construct in this paper is a two-country two-factor affine yield model
belonging to the class of term structure models proposed by Duffie and Kan (1996). In this class of
models, the interest rates and prices of bonds are linear (affine) functions of a small number of factors.
The dynamics of these factors are described by a generalized square root diffusion process. The major
advantage of working with this class of models is that such models are tractable yet capable of
capturing many shapes of the yield curve. The affine term structure model nests many well-known
models, such as the one-factor Vasicek (1977) and Cox, Ingersoll, and Ross (CIR, 1985), and the two-
factor model of Longstaff and Schwartz (1992).

To focus on the empirical issues, we follow Campbell, Lo and MacKinlay (1997, hereafter CLM) and
Gong and Remolona (1997a) by specifying the model in terms of a discrete-time stochastic discount
process, thus avoiding the pitfalls of estimating a continuous time model with discrete-time data.2

These models specify the stochastic processes of the factors and derive bond yields as functions of the
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factors and time to maturity. Thus these models exploit cross-sectional arbitrage restrictions imposed
by time-series processes. The basic two-factor model is similar to the one in Gong and Remolona
(1997b).

2.1.1 The pricing kernel

The pricing kernel approach relies on a no-arbitrage condition. In the case of zero-coupon bonds, the
real price of an n-period bond is given by3

[ ],11,1 ++−= ttntnt MPEP (1)

where Mt+1 is the stochastic discount factor. Th equation states that the price of the n-period bond is
equal to the expected discount value of the bond’s next-period price. It rules out arbitrage
opportunities by applying the same discount factor to all bonds.4  In what follows, we will model
Pn,t by modelling the stochastic process of Mt+1.

To derive an affine-yield model, the distribution of the stochastic discount factor Mt+1 is assumed to be
conditionally lognormal. In addition to providing model tractability, this assumption keeps the
discount factor positive and unique. Taking logs of (1) we get

[ ] [ ].
2

1
1,111,11 +−++−+ +++= tntttnttnt pmVarpmEp (2)

where lower case letters denote logarithms, for example, pt+1 = log(Pt+1).

Since there are two factors, x1,t and x2,t, that forecast mt+1, an affine-yield model that satisfies the
Duffie-Kan (1996) conditions can be written as

-pnt = An + B1nx + B2nx2t. (3)

which is a linear function of the factors.5 Since the n-period bond yield is npy ntnt −= , yields will
also be linear in the factors. Note that the intercept An and factor loadings B1n and B2n are time-
invariant functions of the time to maturity (n). The approach here is to specify the coefficients An, B1n

and B2n by solving (3) based on the stochastic processes of x1,t and x2,t and verify that (2) holds.

We will consider two similar affine-yield two-factor models, one for Canada and one for the United
States, that satisfy the Duffie-Kan conditions.

2.2 The US model

In the US model, the pricing kernel is assumed to be driven by two factors: one reflects the
expectations of inflation that are specific to the United States and the other is a real factor that is
common to both the United States and Canada, representing real rate expectations. Without loss of
generality, we can specify the first factor to be the inflation factor and the second factor to be the real
factor. We will show how we identify these factors later. The negative of the log-stochastic discount
factor is driven by the two factors, which enter the relationship additively:

1211 ++ ++=− tttt wxxm (4)
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The pricing equation can be derived by considering the intertemporal choice problem of an investor who maximizes the
expectation of a time-separable utility function, or derived merely from the absence of arbitrage, see Campbell, Lo and
MacKinlay (1997).

4
Essentially, there exists a positive random variable, m, satisfying the pricing equation (1) on all traded bonds if the
economy permits no pure arbitrage opportunities.

5
Duffie and Kan (1996) provide the necessary and sufficient conditions for the existence and uniqueness of a solution to
the affine specification. See also CLM (1997) and Backus, Foresi and Telmer (1998).
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where wt+1 represents the unexpected change in the log stochastic discount factor and will be related to
risk.6 The shock has a mean of zero and a variance that will be specified to depend on the stochastic
processes of the two factors x1t and x2t. Each factor follows a univariate AR(1) process with
heteroskedastic shocks induced by a square-root process

( ) 11
2/1

1111111 1 ++ ++−= tttt uxxx φµφ (5)

( ) 12
2/1

2222212 1 ++ ++−= tttt uxxx φµφ      (6)

where 1 - φ1  and 1 - φ2  are the rates of mean reversion, with the values of φ1 and φ2 both restricted to
be between zero and one, µ1 and µ2 are long-run means to which the factors revert, and u1,t+1 and u2,t+1

are uncorrelated shocks with mean zero and variances σ1
2 and σ2

2.

To model inflation-risk premiums and real-term premiums, we specify the shock to mt+1 to be
proportional to the factor shocks

1,2
2/1

221,1
2/1

111 +++ += ttttt uxuxw λλ      (7)

where λ1 and λ2 represent market prices of risks, both of which are expected to be negative. Risks arise
from unexpected revisions in expectations and these are the risks priced by the bond market.
Following CIR (1985) and CLM (1997), we specify square-root diffusions, which have the advantage
of inducing time-varying risk premiums while keeping yields affine for a tractable model.

The fact that a bond trades at par at maturity is written as  p0,t = log(P0,t+1) = 0. It follows that the one-
period yield is

( ) ( ) tttt xxpy 2
2
2

2
22

1
1

2
1

2
12

1
11 11 σλσλ −+−=−=     (8)

which is linear in the factors. We can verify that in general an n-period bond is similary affine, with
coefficients given by (see Appendix I)

( ) ( ) 1,2221,1111 11 −−− −+−+= nnnn BBAA µφµφ , (9)

( ) 2
1

2
1,111,11,1 2

1
1 σλφ −− +−+= nnn BBB , (10)

( ) 2
2

2
1,221,22,2 2

1
1 φλφ −− +−+= nnn BBB . (11)

The coefficients B1,n and B1,n are called factor loadings. Equations (9) to (11) impose strict cross-
sectional arbitrage restrictions to be satisfied by eight parameters: the persistence parameters φ1  and
φ2 , the long-run means µ1 and µ2 , the volatilities  σ1

2 and σ2
2, and the prices of risk  λ1 and λ2.

2.3 The Canadian model

The Canadian model follows the same set-up as the US model except that those variables and
coefficients that are specific to the Canadian model are denoted with an asterisk (*). Thus, the negative
of the log stochastic discount factor is:

*** 1211 ++ ++=− tttt wxxm (12)

where wt+1
* represents the unexpected change in the log stochastic discount factor and will be related

to risk. The shock has a mean of zero and a variance that will be specified to depend on the stochastic
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In other words, the minus log pricing kernel is equal to the sum of two factors, adjusted for their risks.
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processes of the two factors x1,t* and x2t.  Since the second factor is common to both countries, we
need only specify the process for the first factor:

( ) ****1* 11111,1 tt xx φµφ +−=+ (13)

where all the variables are defined similarly to those in the US model.

The shock to mt+1* is specified to be proportional to the shock to x1,t+1* and x2,t+1*:

1,2
2/1

221,1
2/1

111 ***** +++ += ttttt uxuxw λλ . (14)

Here the price of risk of the common factor, *2λ , is specified to be different from the US model.

Since the Canadian model shares a common factor with the US model, the price of an n- period bond
is given by

tntnnnt xBxBAp 2211 ***** ++=− .

Note that we allow the loading of the real factor, B2n, to be different between the two countries because
the prices of risk of the common factor are allowed to be different. We will let the data determine
whether financial markets in the two countries price this common source risk in the same way given
the assumption of a common real shock.

The one-period yield is

tttt xxpy 2
2
2

2
21

2
1

2
111 *

2

1
1***

2

1
1** 





 −+





 −=−= σλσλ . (16)

which is also linear in the factors, with the coefficients 0*1 =A , 2
1

2
11,1 **

2
1

1* σλ−=B and

2
2

2
21,2 *

2

1
1* σλ−=B .

We can also verify that the price of an n-period bond is linear in the factors with the coefficients given
by (see Appendix I)

( ) ( ) *1***1** 1,2221,1111 −−− −+−+= nnnn BBAA µφµφ , (17)

( ) 2
1

2
1,111,11,1 ***

2

1
**1* σλφ −− +−+= nnn BBB , (18)

( ) 2
2

2
1,221,22,2 **

2

1
*1* φλφ −− +−+= nnn BBB . (19)

Again, the coefficients B1,n* and B2,n* are factor loadings while the coefficient An* represents the pull
of the factors to their long-run means. Equations (17) to (19) impose cross-sectional restrictions to be
satisfied by eight parameters: the rates of mean reversion *1 1φ−  and 21 φ− , the long run means *1µ
and 2µ , the prices of risks *1λ  and *2λ , and the volatilities *1σ  and 2σ .

2.4 The inflation process and the inflation factor

In order to identify the inflation factor in the US model, we need to model the market’s perception of
the inflation process. Here, the identification relies on the assumption of rational expectations and a
fairly simple inflation process perceived by market participants. Suppose the CPI inflation rate follows
a stationary AR(1) process:

( ) 11 1 ++ ++−= ttt εθπηθπ , (20)
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where θ  is the rate of inflation persistence, η  is a fixed long-run mean and 1+tε is a shock.

Note that the short rate in (8) is a risk-free rate because there is no need for revisions in expectations in
one period. Hence, we can decompose the short rate into the inflation expectation and the expectation
of real return according to the Fisher equation. By specifying x1,t to be the inflation factor, the first
term on the right-hand side of (8) is thus the inflation expectation. We have

( ) ( ) tttt xE θπηθσλπ +−=




 −≡+ 1

2

1
1 ,1

2
1

2
11 . (21)

We then update by one period to get

( ) ( ) 11,1
2
1

2
121 1

2

1
1 ++++ +−=





 −≡ tttt xE θπηθσλπ (22)

Substitute (20) and (21) into (22) and compare to (5). Under rational expectations, the expectations

process inherits the parameters of the true process, so that 1φθ = , 1
2
1

2
12

1
1 µσλη 





 −=  and

1,1
2/1

1
2
1

2
11 2

1
1 ++ 





 −= ttt uxσλθε .

For subsequent estimation purposes, it will be useful to write (21) as:

ttt vxBA ππππ ++= 1ˆ , (23)

where

1
2
1

2
1

1

1

2

1
1

1 µσλ
φ

φ
π 





 −−−=A , (24)

and






 −= 2

1
2
1

1 2

1
1

1 σλ
φπB . (25)

Hence, we derive an explicit link between observed inflation and the unobserved inflation factor x1t. In
the estimation procedure, this equation serves to identify x1t as the factor driven by the expectation of
inflation.7

2.5 Inflation risk and real-term premiums

The US inflation risk premium and real-term premium can be derived from the expected excess return
on an n-period bond:

( ) tntntntntnttnt xBxBxBxByppE 2
2
21,

2
2,2

2
21,221

2
1

2
1,1,1

2
11,1111,1 2

1

2

1 σσλσσλ −−−−+− −−−−=−− (26)

where the terms with x1t represent the inflation-risk premium and the terms with x2,t represents the real-
term premium. The two terms not containing 1λ  or 2λ  represent Jensen’s inequality, which appear
because we are working in logarithms. Note that both the inflation-risk and real-term premiums will
depend on maturity and vary over time with the respective factors.

Similarly, the Canadian inflation risk premium and real-term premium can be derived from the
expected excess return on an n-period bond:
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An alternative way of identifying the inflation factor is to use inflation forecast data, as in Jegadeesh and Pennacchi
(1996).
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( ) ***
2

1
******* 1

2
1

2
1,1,1

2
11,1111,1 tntntnttnt xBxByppE σσλ −−+− −−=−−

.*
2

1
** 2

2
2

2
1,2,2

2
21,22 tntn xBxB σσλ −− −− (27)

3. Data and estimation

3.1 Data

Recent work on term-structure models by Duffie and Singleton (1997) and Gong and Remolona
(1997c) suggest that a third factor is needed to fit the entire yield curve and to explain the hump in the
volatility curve. Therefore, we limit ourselves to fitting only the two-year to 10-year range of the yield
curve, where inflation expectations and inflation risks tend to have larger and more persistent
influences on these yields than the shorter-term yields. At the same time, the assumption of
independent real and inflation expectations is more reasonable for these maturities. The sample period
runs from 1984:1 to 1998:12.

3.1.1 Canadian data

The Canadian monthly data set consists of zero-coupon rates derived from the constant maturity par-
value yields on federal bonds used in Day and Lange (1997).8

3.1.2 US data

Monthly data on zero-coupon yields of two-year to 10-year bonds are from McCulloch and Kwon
(1993) and supplemented by the data from the Federal Reserve Bank of New York. In the case of the
Federal Reserve data, each zero curve is generated by fitting a cubic spline to prices and maturities of
about 160 outstanding coupon-bearing US Treasury securities. The securities are limited to off-the-run
Treasuries to eliminate the most liquid securities and reduce the possible effect of liquidity premiums.

Summary statistics for the annualized CPI inflation and the zero coupon yields for maturities of two,
five and 10 years for the two countries are reported in Table 1. The CPI inflation is constructed from
1-month-ahead percentage changes in seasonally adjusted CPI and is annualized by multiplying by 12.
Note that average bond yields are lower in the United States but average inflation is higher. Bond
yields, however, are more volatile in the United States and inflation is less volatile. The average
inflation and yield differentials between the two countries are reported in the last column of Table 1. It
is interesting to explain why Canada has a lower inflation rate but yet higher bond yields throughout
the sample.

Figure 1a plots the US and Canadian two-year yields and Figure 1b plots the two-year-ahead CPI
inflation rates over the sample period. Canadian yields were above US yields for most of the sample
periods except in 1984. Canadian inflation was higher than US inflation before 1987 but between 1987
and 1989, inflation in Canada and the United States was very similar. The anti-inflation policy that
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The par-value yields are constructed using the Bell method. In the literature, there are two standardized ways to express
the term structure; to report a par yield curve consisting of yield to maturity on a par bond or to report a spot rate curve
consisting of yields to maturity on zero-coupon bonds. Either way of expressing the term structure requires estimating the
term structure from yields to maturity on non-par coupon bonds. However, once constructed, the par yield and the spot
rate can be derived from each other using a bootstrap method. For the range of bond yields studied in this paper, only
Canadian par yield data is available at the moment. The 10-year par- value yield is from Boothe (1991) up to 1989 and
then spliced with the Bank of Canada data base. Both use the Bell model.



02.07.99 8

was introduced in Canada in 1989 and the subsequent introduction of inflation-reduction targets in
1991 resulted in a sharp drop in inflation. Canadian inflation has been lower than US inflation since
1989, however, bond yields have remained higher in Canada. Figure 1c shows that inflation
differential between Canada and the United States has turned negative since 1988, but the yield
differential has remained positive until 1996.

3.2 Kalman filtering and maximum likelihood estimation

Estimation of the model is based on a subset of the available yields that covers the medium-term
maturity spectrum. Since the factors are treated as latent variables, they can be backed out using the
Kalman filter. Estimation is then by maximum likelihood based on the conditional means and
variances of the processes of the factors.9 In applying the Kalman filter in our estimation, we have to
write our models in linear state-space form. The measurement and transition equations are given by:

ttt vHXAy ++= (28)

11 ++ ++= ttt uFXCX (29)

In our model, the yields, which are affine functions of the factors, serve as the measurement equations
the factors’ stochastic processes, which are AR(1) processes, as well as the inflation equation,
(22), form the transition equations. Thus we have
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   (30)

where ktπ̂  is the actual two-year inflation rate in equation (23), while ylt, ymt, ynt and ylt*, ymt*,ynt* are

zero-coupon yields at time t with maturities l, m and n in the United States and Canada respectively.

The coefficients in the equation are 
k

A
a k

k = , 
k

B
b lk

k =1 , and 
k

B
b k

k
2

2 = , k=l, m, n, which are given

by equations (9)-(11), whereas those coefficients with an asterisk are the Canadian counterparts given
by equations (17)-(19). The coefficients πA  and πB  are given by equations (24) and (25). The vit‘s

are measurement errors distributed with zero mean and standard deviations ei’s where i=1,2,...,7.

The transition equations correspond to equations (5), (6) and (13):
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,    (31)

where the shocks u1t, u2t and u1t* are distributed normally with mean zero and standard errors 1σ , 2σ
and *1σ . Note that in standard linear state-space models, no restrictions link the measurement
equations and the transition equations. In our model, however, the arbitrage conditions serve as over-

                                                     
9

de Jong (1997) discusses some empirical problems related to the estimation of the parameters by maximum likelihood
and/or quasi-maximum likelihood methods. However, he finds that for parameters typically found in estimates of term
structure model, the simulation results in Lund (1997) suggest that the bias in the QML estimator is not particularly large.
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identifying restrictions that link the coefficients of these two equations. The arbitrage conditions are
given by (9)-(11) and (17)-(19) with initial values set by (8) and (16).

4. Results

4.1 Parameter estimates

Table 2 reports the parameter estimates for the model.  Our parameter estimates of φ  are very close to
one, suggesting high persistence or slow mean reversion. The σ  parameters measure factors’
volatilities while the µ ’s are the long-run means of the factors; 1λ  and *1λ  are the prices of inflation

risk and 2λ  and *2λ  the prices of real risks.  In estimating the model, we allow the prices of risks to
be different in the two countries. However, the prices of both real and inflation risks turn out to be
almost identical.

In evaluating the model, we rely on the implications of the parameters for inflation expectations and
risk premiums rather than individual estimates. To do this, we back out from the model conditional
forecasts of the inflation and real factors, derive the implied expectations and risk premiums, and then
examine how these implied variables behave over time. In particular, we can examine how they vary
over time in light of the events over the sample period. Finally, we also examine how well the implied
average yield curves fit the actual curves for the two countries.

4.2 Implied yields and inflation expectations

Figure 2a through 2c plot the implied Canadian and US two-year yields and inflation expectations.
Comparing Figures 1a and 2a, we find that the implied yields for Canada and the United States follow
a similar relationship to that of the actual yields. The Canadian implied yields are higher than the US
implied yields for most of the sample period. Figure 2b shows that until mid-1996,Canadian inflation
expectations were higher than US inflation expectations, which is in contrast to the actual inflation
series depicted in Figure 1b.

As a result, Figure 2c shows that both the yield and inflation differentials are positive for most of the
period after 1989, with the differentials reaching their peaks in the early 1990s.

Figures 3a and 3b plot the actual and implied two-year yields for Canada and the United States. The
model does a good job in producing time-series of implied bond yields that mimic actual bond yields.

Figure 4a plots the two-year-ahead actual inflation and inflation expectations in the United States and
Figure 4b plots those in Canada. Note that actual two-year-ahead inflation is only available up to
December 1996. One-period-ahead inflation expectations are backed out from the model’s conditional
forecasts of x1,t and, x1,t* and equation (21). We can then calculate the 24-month-ahead inflation
expectations by accumulating them over the same horizon. Figure 4a shows that the derived US
inflation expectations follow actual inflation closely, especially after 1991. This is in sharp contrast to
the results found in Fung and Remolona (1998). In that paper, inflation expectations are substantially
below actual US inflation. The results in this paper are a significant improvement because using actual
US inflation in the estimation allows us to better identify the US inflation factor.

Figure 4b plots Canadian inflation expectations and actual inflation as well as the survey data on
inflation.10 From 1984 to 1989, the three lines were fairly close, but in 1989 both the survey data and
derived inflation expectations missed the sharp decline in inflation. This suggests that the public was

                                                     
10

Canadian two-year-ahead inflation expectations from Consensus Forecasts only began in 1990. Thus we use one-year-
ahead inflation expectations from the Conference Board of Canada to supplement the series. Note that the data are used
only for comparison purposes, but not for estimation of the model.



02.07.99 10

slow to react to the Bank of Canada’s low inflation policy but the bond market was even slower to
respond. However, the Bank was slowly gaining credibility. Since 1993, the survey data has moved
closely with actual inflation, however, the derived inflation expectations have still been above actual
inflation by more than 1 percentage point. One reason that the derived Canadian inflation expectations
are higher than actual inflation is that actual Canadian yields are higher than US yields while actual
Canadian inflation is lower. In the model, actual US inflation helps to extract US inflation
expectations which fit actual US inflation well. With the assumption of a common real factor, higher
Canadian bond yields imply higher Canadian inflation expectations and/or inflation risk than those of
the United States. Thus when Canadian inflation became lower than US inflation in 1989, we find that
inflation expectations have been substantially higher than actual inflation since then. Since 1997,
however, the derived inflation expectations have moved closely with the survey data at around an
inflation rate of two per cent. This suggests that the market expects inflation to remain stable at the
mid-point of the Bank of Canada’s inflation-target range.

4.3 Inflation and real risks

Revisions in inflation expectations are a source of risk that appears to have been priced by the bond
market in the 1980s and 1990s. Since the magnitudes of the revisions are related to the level of the
expectations, risk premiums vary over time. The estimates of the prices of risks, 1λ  and 2λ , allow us
to calculate inflation and risk premiums by applying the model’s conditional forecasts of x1,t and x1,t*
as well as x2,t to the relevant terms in equations (25) and (26). In Figures 5a and 5b, we graph the
estimated inflation and real risk premiums for the five-year yield in Canada and the United States.11

These risk premiums display substantial time variation throughout the entire sample period. Figure 5a
shows that the inflation risk premium is higher in Canada than the United States over the sample. The
inflation-risk premium in Canada peaked at 1991 and has then declined slowly to a similar level as the
US inflation-risk premium. Figure 5b shows that the real-risk premium is exactly the same for both
countries, although we allow the price of real risk to be different. Note that the real-risk premium has
been slowly declining since mid-1984 and has remained rather stable at a very low level since 1992.

Campbell and Shiller (1996) estimate the size of the inflation risk premium in the United States,
defined as the average excess return on an inflation-sensitive asset that is attributable to its inflation
sensitivity, using two different methods. In the first method, they assume that the average excess
return on a nominal five-year bond over a comparatively riskless asset such as a nominal 3-month
Treasury bill is entirely accounted for by its inflation risk premium. Over the sample period 1953-94,
they estimate a risk premium of 70 to 100 basis points on a five-year nominal bond.12 In the second
method, they use asset pricing theory to try to judge what risk premium is implied by the covariance of
bond returns with relevant state variables. They use the return on a proxy for the market portfolio,
such as a value-weighted stock index, and the growth rate of aggregate consumption. They obtain an
implied risk premium of about 90 to 150 basis points. Thus they suggest that a best guess might be 50
to 100 basis points for a five-year zero-coupon bond. Gong and Remolona (1997b) estimate the
inflation risk premium in the United States to be time-varying, ranging from around 50 to 150 basis
points.

In our model, over the sample period 1984-98 the inflation-risk premiums in Canada and the United
States vary between approximately 10 basis points and approximately 90 basis points The average
inflation-risk premiums are 57 basis points in Canada and 21 basis points in the United States, with a
differential of about 36 basis points. The inflation risk premiums derived in the model are in line with
those found in the literature. Figure 5b shows that the real risk premium varies over a range between 0
to 57 basis points. The average total risk premiums for the five-year rates are 72 basis points for
Canada and 36 basis points for the United States, which are also in line with previous findings.

                                                     
11

We report the five-year risk premium because it allows us to compare our results with estimates from other studies.

12
This estimate could be interpreted as the upper bound for the inflation risk premium because of the possible presence of a
real risk premium.
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4.4 Actual and implied yield differentials

One question often asked when working with term structure models is how well the implied yield
curve from the model fits the actual average yield curve over the sample period. Figures 6a and 6b plot
the actual and implied yield curves in the United States and Canada, respectively. The implied US
yield curve gives a good fit of the actual yield curve. The implied Canadian yield curve fits the actual
curve well between the 1- and 10-year maturities. This is probably because we estimate the model
using only medium-term bond yields. The actual Canadian yield curve is rather flat with a steep slope
at the short end of the maturity spectrum − less than 12-month. We may be able to get a better fit of
the curve by including short-term bond yields in our estimation. However, including short-term yields
would make it harder to justify our assumption of independent inflation and real factors.

In a two-country model, it may also be interesting to look at how well the three factors reproduce the
shape of the average yield differential curve because if the model is misspecified, it will affect the
implied yield curves in the two countries in more or less the same way. Figure 6c plots the actual and
implied Canada-US yield differentials across maturities up to 10 years. The actual yield differential
curve is mainly downward-sloping except the slight upward slope at the short end. The curve is almost
flat for maturities of 5 years and above. The implied yield differential curve is also downward-sloping
starting at the 3-year maturity and does not have a very close fit to the actual curve.

5. Conclusions

In this paper, we construct a two-country, multi-factor affine term-structure model to estimate inflation
expectations and risk premiums in Canada and the United States using bond yields of 2-, 5- and 10-
year maturities as well as actual US inflation. The results suggest that there is useful and substantial
information that can be extracted from the yield curve, especially when countries that have integrated
financial markets are estimated jointly.

A few other issues, however, deserve further investigation. First, in future work, we could also include
actual Canadian inflation in our estimation in order to get better estimates for the inflation
expectations in Canada. Thus we could compare the results with two separate 2-factor models to
examine whether estimating bond yields of the two countries jointly would provide more information
than estimating two separate closed-economy models. Second, we could allow for an extra real
idiosyncratic shock that affects only Canadian yields but not US yields or allowing the same real
shock to affect the two countries differently.
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Appendix 1: Recursive restrictions

We start with the general pricing equation:
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showing the short rate to be linear in the factors.

Now, we guess that the price of an n-period bond is affine:
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We verify that there exist An, B1n and B2n that satisfy the general pricing equation:
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Now, by matching coefficients we have
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Appendix 2. Kalman filtering procedure13

For the state-space models in Section 3, the measurement and transition equations can be written in the
following matrix form:

Measurement equation:

ttt vHXAy ++=

where  vt~N(0,R).

Transition equation:

11 ++ ++= ttt uFXCX

where  ut+1¦1~N(0,Qt).

The Kalman filter procedure of this state-space model is the following:

1. Initialize the state-vector St:

The recursion begins with a guess 01S , usually given by

( ).ˆ
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The associated mean square error (MSE) is
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The initial state S1 is assumed to be ( )0101 ,ˆ PSN .

2. Forecast yt:

Let It denote the information set at time t. Then
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See also Hamilton (1984) for a more complete description of the procedure.
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4. Forecast t St+1 given It:
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5. Maximum Likelihood Estimation of Parameters

The likelihood function can be constructed recursively
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for t = 1,2,…,T.

Parameter estimates can then be estimated based on the numerical maximization of the likelihood
function.

Table 1

Summary statistics
Sample January 1984 to August 1995

US Canada

Variable
Mean Standard

deviations

First order
auto-

correlation
Mean Standard

deviations

First order
auto-

correlation

Canada-US
differentials

CPI
Inflation

3.18 2.09 0.46 2.83 2.68 0.23 – 0.35

2-Year
Bond Yield

6.86 1.93 0.98 7.85 2.19 0.98 0.99

5-Year
Bond Yield

7.45 1.88 0.98 8.21 1.94 0.98 0.76

10-Year
Bond Yield

7.86 1.81 0.98 8.70 1.82 0.98 0.84
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Table 2

Parameter estimates

Sample 84:1-98:12

Inflation parameters

φ1 0.94 (0.5015)

φ1* 0.97 (0.4381)

µ1 4.62 (3.1936)

µ1* 5.67** (2.3008)

λ1 – 7.29** (3.0013)

λ1* – 13.62** (3.7844)

σ1 0.1033 (0.0990)

σ1* 0.0568 (0.0531)

Real return parameters

φ2 0.97 (0.6725)

µ2 9.83 (8.5447)

λ2 – 7.07** (2.9168)

λ2* – 7.06** (2.9099)

σ2 0.1667** (0.07)

Standard deviation of measurement errors

e1 1.4916

e2 0.3247

e3 1.0714

e4 1.4507

e5 0.6296

e6 0.8577

e7 1.1829

Mean log likelihood – 6.18

Double asterisks indicate statistical significance at the 5% level. For the φ ’s, we report significant difference from one

instead of zero.
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