42 research outputs found

    Characterization of Electron Beam Free-Form Fabricated 2219 Aluminum and 316 Stainless Steel

    Get PDF
    Researchers at NASA Langley Research Center have developed an additive manufacturing technology for ground and future space based applications. The electron beam free form fabrication (EBF3) is a rapid metal fabrication process that utilizes an electron beam gun in a vacuum environment to replicate a CAD drawing of a part. The electron beam gun creates a molten pool on a metal substrate, and translates with respect to the substrate to deposit metal in designated regions through a layer additive process. Prior to demonstration and certification of a final EBF3 part for space flight, it is imperative to conduct a series of materials validation and verification tests on the ground in order to evaluate mechanical and microstructural properties of the EBF3 manufactured parts. Part geometries of EBF3 2219 aluminum and 316 stainless steel specimens were metallographically inspected, and tested for strength, fatigue crack growth, and fracture toughness. Upon comparing the results to conventionally welded material, 2219 aluminum in the as fabricated condition demonstrated a 30% and 16% decrease in fracture toughness and ductility, respectively. The strength properties of the 316 stainless steel material in the as deposited condition were comparable to annealed stainless steel alloys. Future fatigue crack growth tests will integrate various stress ranges and maximum to minimum stress ratios needed to fully characterize EBF3 manufactured specimens

    Fatigue Crack Growth in Peened Friction Stir Welds

    Get PDF
    Friction stir welding induces residual stresses that accelerates fatigue crack growth in the weld nugget. Shot peening over the weld had little effect on growth rate. Laser peening over the weld retarded the growth rate: Final crack growth rate was comparable to the base, un-welded material. Crack tunneling evident from residual compressive stresses. 2195-T8 fracture surfaces were highly textured. Texturing makes comparisons difficult as the material system is affecting the data as much as the processing. Material usage becoming more common in space applications requiring additional work to develop useful datasets for damage tolerance analyses

    7075-T6 and 2024-T351 Aluminum Alloy Fatigue Crack Growth Rate Data

    Get PDF
    Experimental test procedures for the development of fatigue crack growth rate data has been standardized by the American Society for Testing and Materials. Over the past 30 years several gradual changes have been made to the standard without rigorous assessment of the affect these changes have on the precision or variability of the data generated. Therefore, the ASTM committee on fatigue crack growth has initiated an international round robin test program to assess the precision and variability of test results generated using the standard E647-00. Crack growth rate data presented in this report, in support of the ASTM roundrobin, shows excellent precision and repeatability

    Composite Overwrapped Pressure Vessels, A Primer

    Get PDF
    Due to the extensive amount of detailed information that has been published on composite overwrapped pressure vessels (COPVs), this document has been written to serve as a primer for those who desire an elementary knowledge of COPVs and the factors affecting composite safety. In this application, the word "composite" simply refers to a matrix of continuous fibers contained within a resin and wrapped over a pressure barrier to form a vessel for gas or liquid containment. COPVs are currently used at NASA to contain high pressure fluids in propulsion, science experiments, and life support applications. They have a significant weight advantage over all metal vessels but require unique design, manufacturing, and test requirements. COPVs also involve a much more complex mechanical understanding due to the interplay between the composite overwrap and the inner liner. A metallic liner is typically used in a COPV as a fluid permeation barrier. The liner design concepts and requirements have been borrowed from all-metal vessels. However, application of metallic vessel design standards to a very thin liner is not straightforward. Different failure modes exist for COPVs than for all-metal vessels, and understanding of these failure modes is at a much more rudimentary level than for metal vessels

    Damage Tolerance Analysis of a Pressurized Liquid Oxygen Tank

    Get PDF
    A damage tolerance assessment was conducted of an 8,000 gallon pressurized Liquid Oxygen (LOX) tank. The LOX tank is constructed of a stainless steel pressure vessel enclosed by a thermal-insulating vacuum jacket. The vessel is pressurized to 2,250 psi with gaseous nitrogen resulting in both thermal and pressure stresses on the tank wall. Finite element analyses were performed on the tank to characterize the stresses from operation. Engineering material data was found from both the construction of the tank and the technical literature. An initial damage state was assumed based on records of a nondestructive inspection performed on the tank. The damage tolerance analyses were conducted using the NASGRO computer code. This paper contains the assumptions, and justifications, made for the input parameters to the damage tolerance analyses and the results of the damage tolerance analyses with a discussion on the operational safety of the LOX tank

    Composite Overwrapped Pressure Vessel (COPV) Stress Rupture Testing

    Get PDF
    This paper reports stress rupture testing of Kevlar(TradeMark) composite overwrapped pressure vessels (COPVs) at NASA White Sands Test Facility. This 6-year test program was part of the larger effort to predict and extend the lifetime of flight vessels. Tests were performed to characterize control parameters for stress rupture testing, and vessel life was predicted by statistical modeling. One highly instrumented 102-cm (40-in.) diameter Kevlar(TradeMark) COPV was tested to failure (burst) as a single-point model verification. Significant data were generated that will enhance development of improved NDE methods and predictive modeling techniques, and thus better address stress rupture and other composite durability concerns that affect pressure vessel safety, reliability and mission assurance

    Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology

    Get PDF
    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    A Hybrid Numerical Analysis Method for Structural Health Monitoring

    No full text
    this paper, the authors develop an effective numerical procedure to solve spatial problems of crack propagation in heterogeneous media and propose a structural health monitoring system. Work focuses on the development of a hybrid numerical method to analyze a crack propagating through a thin, multi-layer coated part. The primary objective of the hybrid method is to combine the advantages of finite elements and boundary elements to predict three-dimensional crack propagation. The finite element method (FEM) was used to model the state of the part (far field), and the surface integral method (SIM) was used to model the fatigue crack growth. A key advantage of this approach is that only the crack surfaces have to be re-meshed during crack propagation, with the FEM remaining the sam
    corecore