805 research outputs found

    The inaugural australian centre for hepatitis virology public panel discussion on viral hepatitis research—lessons in scientific community outreach

    Full text link
    Viral hepatitis remains one of the most significant health issues globally, directly responsible for over 1 million deaths each year and affecting almost 300 million people around the world. Scientific research in recent decades has brought about improvements in the lives of people living with chronic viral hepatitis. On the 29 July 2021, the Australian Centre for Hepatitis Virology (ACHV) for the first time held a public educational forum for the general public. The main aim of this event was to inform the affected community about the importance of scientific research and give an overview of upcoming developments in the field. Here, we provide a detailed report of the panel discussion (including its organisation, execution, and lessons learned to incorporate into future events) and provide strategies that can be used by other scientific societies to hold similar events in their own communities

    Mapping participation: a systematic analysis of diverse public participation in the UK energy system

    Get PDF
    This paper develops a novel approach to mapping diverse forms of participation and public engagement, using the example of the UK energy system. It builds on emerging systemic accounts of participation, which go beyond a focus on individual instances of participation, to gain an understanding of broader patterns and connections. Our approach, which forms part of an emerging family of methods that seek to map across multiple forms of public involvement in issues and systems, draws on systematic review methodology and a relational co-productionist conception of participation. The findings of a systematic mapping of public participation related to the UK energy system 2010–2015 are presented, comprising 258 cases in total. The mapping analysis reveals patterns as to the what (energy objects and issues), how (procedural formats) and who (publics) of energy participation in the UK, which go far beyond the conventionally assumed forms and sites of public participation around energy. Implications for how the dynamics of ‘whole system’ energy participation are represented and the role of approaches to mapping participation in governing energy transitions are considered

    Soil respiration in a northeastern US temperate forest: a 22‐year synthesis

    Get PDF
    To better understand how forest management, phenology, vegetation type, and actual and simulated climatic change affect seasonal and inter‐annual variations in soil respiration (Rs), we analyzed more than 100,000 individual measurements of soil respiration from 23 studies conducted over 22 years at the Harvard Forest in Petersham, Massachusetts, USA. We also used 24 site‐years of eddy‐covariance measurements from two Harvard Forest sites to examine the relationship between soil and ecosystem respiration (Re). Rs was highly variable at all spatial (respiration collar to forest stand) and temporal (minutes to years) scales of measurement. The response of Rs to experimental manipulations mimicking aspects of global change or aimed at partitioning Rs into component fluxes ranged from −70% to +52%. The response appears to arise from variations in substrate availability induced by changes in the size of soil C pools and of belowground C fluxes or in environmental conditions. In some cases (e.g., logging, warming), the effect of experimental manipulations on Rs was transient, but in other cases the time series were not long enough to rule out long‐term changes in respiration rates. Inter‐annual variations in weather and phenology induced variation among annual Rs estimates of a magnitude similar to that of other drivers of global change (i.e., invasive insects, forest management practices, N deposition). At both eddy‐covariance sites, aboveground respiration dominated Re early in the growing season, whereas belowground respiration dominated later. Unusual aboveground respiration patterns—high apparent rates of respiration during winter and very low rates in mid‐to‐late summer—at the Environmental Measurement Site suggest either bias in Rs and Re estimates caused by differences in the spatial scale of processes influencing fluxes, or that additional research on the hard‐to‐measure fluxes (e.g., wintertime Rs, unaccounted losses of CO2 from eddy covariance sites), daytime and nighttime canopy respiration and its impacts on estimates of Re, and independent measurements of flux partitioning (e.g., aboveground plant respiration, isotopic partitioning) may yield insight into the unusually high and low fluxes. Overall, however, this data‐rich analysis identifies important seasonal and experimental variations in Rs and Re and in the partitioning of Re above‐ vs. belowground

    Soil respiration in a northeastern US temperate forest: a 22‐year synthesis

    Get PDF
    To better understand how forest management, phenology, vegetation type, and actual and simulated climatic change affect seasonal and inter‐annual variations in soil respiration (Rs), we analyzed more than 100,000 individual measurements of soil respiration from 23 studies conducted over 22 years at the Harvard Forest in Petersham, Massachusetts, USA. We also used 24 site‐years of eddy‐covariance measurements from two Harvard Forest sites to examine the relationship between soil and ecosystem respiration (Re). Rs was highly variable at all spatial (respiration collar to forest stand) and temporal (minutes to years) scales of measurement. The response of Rs to experimental manipulations mimicking aspects of global change or aimed at partitioning Rs into component fluxes ranged from −70% to +52%. The response appears to arise from variations in substrate availability induced by changes in the size of soil C pools and of belowground C fluxes or in environmental conditions. In some cases (e.g., logging, warming), the effect of experimental manipulations on Rs was transient, but in other cases the time series were not long enough to rule out long‐term changes in respiration rates. Inter‐annual variations in weather and phenology induced variation among annual Rs estimates of a magnitude similar to that of other drivers of global change (i.e., invasive insects, forest management practices, N deposition). At both eddy‐covariance sites, aboveground respiration dominated Re early in the growing season, whereas belowground respiration dominated later. Unusual aboveground respiration patterns—high apparent rates of respiration during winter and very low rates in mid‐to‐late summer—at the Environmental Measurement Site suggest either bias in Rs and Re estimates caused by differences in the spatial scale of processes influencing fluxes, or that additional research on the hard‐to‐measure fluxes (e.g., wintertime Rs, unaccounted losses of CO2 from eddy covariance sites), daytime and nighttime canopy respiration and its impacts on estimates of Re, and independent measurements of flux partitioning (e.g., aboveground plant respiration, isotopic partitioning) may yield insight into the unusually high and low fluxes. Overall, however, this data‐rich analysis identifies important seasonal and experimental variations in Rs and Re and in the partitioning of Re above‐ vs. belowground

    Getting into hot water:sick guppies frequent warmer thermal conditions

    Get PDF
    Ectotherms depend on the environmental temperature for thermoregulation and exploit thermal regimes that optimise physiological functioning. They may also frequent warmer conditions to up-regulate their immune response against parasite infection and/or impede parasite development. This adaptive response, known as ‘behavioural fever’, has been documented in various taxa including insects, reptiles and fish, but only in response to endoparasite infections. Here, a choice chamber experiment was used to investigate the thermal preferences of a tropical freshwater fish, the Trinidadian guppy (Poecilia reticulata), when infected with a common helminth ectoparasite Gyrodactylus turnbulli, in female-only and mixed-sex shoals. The temperature tolerance of G. turnbulli was also investigated by monitoring parasite population trajectories on guppies maintained at a continuous 18, 24 or 32 °C. Regardless of shoal composition, infected fish frequented the 32 °C choice chamber more often than when uninfected, significantly increasing their mean temperature preference. Parasites maintained continuously at 32 °C decreased to extinction within 3 days, whereas mean parasite abundance increased on hosts incubated at 18 and 24 °C. We show for the first time that gyrodactylid-infected fish have a preference for warmer waters and speculate that sick fish exploit the upper thermal tolerances of their parasites to self medicate

    Confirmation of childhood acute lymphoblastic leukemia variants, ARID5B and IKZF1, and interaction with parental environmental exposures.

    Full text link
    Genome wide association studies (GWAS) have established association of ARID5B and IKZF1 variants with childhood acute lymphoblastic leukemia (ALL). Epidemiological studies suggest that environmental factors alone appear to make a relatively minor contribution to disease risk. The polygenic nature of childhood ALL predisposition together with the timing of environmental triggers may hold vital clues for disease etiology. This study presents results from an Australian GWAS of childhood ALL cases (n = 358) and population controls (n = 1192). Furthermore, we utilised family trio (n = 204) genotypes to extend our investigation to gene-environment interaction of significant loci with parental exposures before conception, and child's sex and age. Thirteen SNPs achieved genome wide significance in the population based case/control analysis; ten annotated to ARID5B and three to IKZF1. The most significant SNPs in these regions were ARID5B rs4245595 (OR 1.63, CI 1.38-1.93, P = 2.13×10(-9)), and IKZF1 rs1110701 (OR 1.69, CI 1.42-2.02, p = 7.26×10(-9)). There was evidence of gene-environment interaction for risk genotype at IKZF1, whereby an apparently stronger genetic effect was observed if the mother took folic acid or if the father did not smoke prior to pregnancy (respective interaction P-values: 0.04, 0.05). There were no interactions of risk genotypes with age or sex (P-values >0.2). Our results evidence that interaction of genetic variants and environmental exposures may further alter risk of childhood ALL however, investigation in a larger population is required. If interaction of folic acid supplementation and IKZF1 variants holds, it may be useful to quantify folate levels prior to initiating use of folic acid supplements

    Bio-physical determinants of sediment accumulation on an offshore coral reef: A snapshot study

    Get PDF
    Sediments are found on all coral reefs around the globe. However, the amount of sediment in different reservoirs, and the rates at which sediments move between reservoirs, can shape the biological functioning of coral reefs. Unfortunately, relatively few studies have examined reef sediment dynamics, and associated bio-physical drivers, simultaneously over matching spatial and temporal scales. This has led to a partial understanding of how sediments and living reef systems are connected, especially on clear-water offshore reefs. To address this problem, four sediment reservoirs/sedimentary processes and three bio-physical drivers were quantified across seven different reef habitats/depths at Lizard Island, an exposed mid-shelf reef on the Great Barrier Reef. Even in this clear-water reef location a substantial load of suspended sediment passed over the reef; a load theoretically capable of replacing the entire standing stock of on-reef turf sediments in just 8 h. However, quantification of actual sediment deposition suggested that just 2 % of this passing sediment settled on the reef. The data also revealed marked spatial incongruence in sediment deposition (sediment trap data) and accumulation (TurfPod data) across the reef profile, with the flat and back reef emerging as key areas of both deposition and accumulation. By contrast, the shallow windward reef crest was an area of deposition but had a limited capacity for sediment accumulation. These cross-reef patterns related to wave energy and reef geomorphology, with low sediment accumulation on the ecologically important reef crest aligning with substantial wave energy. These findings reveal a disconnect between patterns of sediment deposition and accumulation on the benthos, with the ‘post-settlement’ fate of sediments dependent on local hydrodynamic conditions. From an ecological perspective, the data suggests key contextual constraints (wave energy and reef geomorphology) may predispose some reefs or reef areas to high-load turf sediment regimes
    • 

    corecore