1,312 research outputs found

    Think Tanks, Business and Civil Society: The Ethics of Promoting Pro-corporate Ideologies

    Get PDF
    Think tanks became key political and economic actors during the twentieth century, creating and occupying an intellectual and political position between academic institutions, the state, civil society, and public debate on organization and management. Think tanks are especially active in setting frames for what constitutes politically and socially acceptable ways of thinking about economic activity and the rights or obligations of corporations. Their operation and influence has been acknowledged and analysed in political science and policy analysis, but in organization and management studies they are almost entirely ignored. In this paper, we review the existing literature on think tanks to develop an ethical–political framework based on a Gramsci’s account of state–civil society relations, referring to historical case materials relating to a significant Brazilian think tank, the Instituto de Pesquisas e Estudos Sociais (IPES). We show how the IPES was successful in bringing then-controversial neoliberal perspectives on management and organization into mainstream political debate, where they could be discussed and ultimately accepted as morally and intellectually legitimate. We note the importance of management education and business schools with respect to think tanks in the development of a hegemonic pro-capitalist interpretation of corporate responsibility, and suggest this is worth more investigation. We conclude by outlining how think tanks are central to civil society acceptance of pro-corporate ideologies, how they might be researched regarding the ethical implications of the work they do, and how our approach provides a foundation for this

    On the birational geometry of the moduli of hyperelliptic curves

    Full text link
    We study the birational geometry of the moduli spaces of hyperelliptic curves with marked points. We complete the Kodaira classification proving that these spaces are of Calabi-Yau type when the number of markings is 4g+64g+6. Further, we provide a full classification of the structure of the pseudo-effective cone of divisors, showing the cone is non-polyhedral when the number of markings is at least two and polyhedral in the remaining cases.Comment: 30 pages, 3 figures. Fixed an error in Corollary 1.

    Using mathematical programming to solve Factored Markov Decision Processes with Imprecise Probabilities

    Get PDF
    AbstractThis paper investigates Factored Markov Decision Processes with Imprecise Probabilities (MDPIPs); that is, Factored Markov Decision Processes (MDPs) where transition probabilities are imprecisely specified. We derive efficient approximate solutions for Factored MDPIPs based on mathematical programming. To do this, we extend previous linear programming approaches for linear approximations in Factored MDPs, resulting in a multilinear formulation for robust “maximin” linear approximations in Factored MDPIPs. By exploiting the factored structure in MDPIPs we are able to demonstrate orders of magnitude reduction in solution time over standard exact non-factored approaches, in exchange for relatively low approximation errors, on a difficult class of benchmark problems with millions of states

    Gatekeeping in health care

    Get PDF
    We study the competitive effects of restricting direct access to secondary care by gatekeeping, focusing on the informational role of general practitioners (GPs). In the secondary care market there are two hospitals choosing quality and specialization. Patients, who are ex ante uninformed, can consult a GP to receive an (imperfect) diagnosis and obtain information about the secondary care market. We show that hospital competition is amplified by higher GP attendance but dampened by improved diagnosing accuracy. Therefore, compulsory gatekeeping may result in excessive quality competition and too much specialization, unless the mismatch costs and the diagnosing accuracy are sufficiently high. Second-best price regulation makes direct regulation of GP consultation redundant, but will generally not implement first-best

    Predictors of and reasons for pacifier use in first-time mothers: an observational study

    Get PDF
    Background: The use of pacifiers is commonplace in Australia and has been shown to be negatively associated with breastfeeding duration. In order to influence behaviour related to the use of pacifiers it is important to understand the reasons for their use. The primary aim of this observational study was to investigate who (if anyone) advises first-time mothers to give a pacifier and the reasons for which they first give (or try to give) a pacifier to their infant. Additionally, this study investigated the predictors of pacifier use and the relationship between pacifier use and breastfeeding duration. Methods: In total, 670 Australian first-time mothers recruited as part of the NOURISH trial completed a questionnaire regarding infant feeding and pacifier use. Results: Pacifiers were introduced by 79% of mothers, of whom 28.7% were advised to use a pacifier by their mother/mother-in-law with a further 22.7% being advised by a midwife. The majority of mothers used a pacifier in order to soothe their infant (78.3%), to help put them to sleep (57.4%) and to keep them comforted and quiet (40.4%). Pacifiers given to infants before four weeks (adjHR 3.67; 95%CI 2.14–6.28) and used most days (adjHR 3.28; 95%CI 1.92–5.61) were significantly associated with shorter duration of breastfeeding. Conclusions: This study identifies an opportunity for educating new mothers and their support network, particularly their infant’s grandmothers, with regards to potential risks associated with the early and frequent use of a pacifier, and alternative methods for soothing their infant, in order to reduce the use of pacifiers and their potentially negative effect on breastfeeding duratio

    Valorization Challenges to Almond Residues: Phytochemical Composition and Functional Application

    Full text link
    [EN] Almond is characterized by its high nutritional value; although information reported so far mainly concerns edible kernel. Even though the nutritional and commercial relevance of the almond is restricted to almond meat; to date; increasing attention has been paid to other parts of this fruit (skin; shell; and hull); considered by-products that are scarcely characterized and exploited regarding their properties as valuable sources of bioactive compounds (mainly represented by phenolic acids and flavonoids). This lack of proper valorization procedures entails the continuation of the application of traditional procedures to almond residues that nowadays are mainly addressed to livestock feed and energy production. In this sense; data available on the physicochemical and phytochemical composition of almond meat and its related residues suggest promising applications; and allow one to envisage new uses as functional ingredients towards value-added foods and feeds; as well as a source of bioactive phytochemicals to be included in cosmetic formulations. This objective has prompted investigators working in the field to evaluate their functional properties and biological activity. This approach has provided interesting information concerning the capacity of polyphenolic extracts of almond by-products to prevent degenerative diseases linked to oxidative stress and inflammation in human tissues and cells; in the frame of diverse pathophysiological situations. Hence; this review deals with gathering data available in the scientific literature on the phytochemical composition and bioactivity of almond by-products as well as on their bioactivity so as to promote their functional application.This work is supported by European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT-Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013. The author Iva Prgomet acknowledges the financial support provided by the FCT- Portuguese Foundation for Science and Technology (SFRH/BD/52539/2014), under the Doctoral Programme "Agricultural Production Chains-From Fork to Farm" (PD/00122/2012).Prgomet, I.; Goncalves, B.; Domínguez-Perles, R.; Pascual-Seva, N.; Barros, A. (2017). Valorization Challenges to Almond Residues: Phytochemical Composition and Functional Application. Molecules. 22(10):1-27. https://doi.org/10.3390/molecules22101774S1272210Pirayesh, H., & Khazaeian, A. (2012). Using almond (Prunus amygdalus L.) shell as a bio-waste resource in wood based composite. Composites Part B: Engineering, 43(3), 1475-1479. doi:10.1016/j.compositesb.2011.06.008Takeoka, G., Dao, L., Teranishi, R., Wong, R., Flessa, S., Harden, L., & Edwards, R. (2000). Identification of Three Triterpenoids in Almond Hulls. Journal of Agricultural and Food Chemistry, 48(8), 3437-3439. doi:10.1021/jf9908289Özcan, M. M., Ünver, A., Erkan, E., & Arslan, D. (2011). Characteristics of some almond kernel and oils. Scientia Horticulturae, 127(3), 330-333. doi:10.1016/j.scienta.2010.10.027Wijeratne, S. S. K., Abou-Zaid, M. M., & Shahidi, F. (2006). Antioxidant Polyphenols in Almond and Its Coproducts. Journal of Agricultural and Food Chemistry, 54(2), 312-318. doi:10.1021/jf051692jSfahlan, A. J., Mahmoodzadeh, A., Hasanzadeh, A., Heidari, R., & Jamei, R. (2009). Antioxidants and antiradicals in almond hull and shell (Amygdalus communis L.) as a function of genotype. Food Chemistry, 115(2), 529-533. doi:10.1016/j.foodchem.2008.12.049Yada, S., Lapsley, K., & Huang, G. (2011). A review of composition studies of cultivated almonds: Macronutrients and micronutrients. Journal of Food Composition and Analysis, 24(4-5), 469-480. doi:10.1016/j.jfca.2011.01.007AMAROWICZ, R., TROSZYNSKA, A., & SHAHIDI, F. (2005). ANTIOXIDANT ACTIVITY OF ALMOND SEED EXTRACT AND ITS FRACTIONS. Journal of Food Lipids, 12(4), 344-358. doi:10.1111/j.1745-4522.2005.00029.xSabaté, J. (1999). Nut consumption, vegetarian diets, ischemic heart disease risk, and all-cause mortality: evidence from epidemiologic studies. The American Journal of Clinical Nutrition, 70(3), 500s-503s. doi:10.1093/ajcn/70.3.500sHyson, D. A., Schneeman, B. O., & Davis, P. A. (2002). Almonds and Almond Oil Have Similar Effects on Plasma Lipids and LDL Oxidation in Healthy Men and Women. The Journal of Nutrition, 132(4), 703-707. doi:10.1093/jn/132.4.703Sabaté, J., Haddad, E., Tanzman, J. S., Jambazian, P., & Rajaram, S. (2003). Serum lipid response to the graduated enrichment of a Step I diet with almonds: a randomized feeding trial. The American Journal of Clinical Nutrition, 77(6), 1379-1384. doi:10.1093/ajcn/77.6.1379Berryman, C. E., Preston, A. G., Karmally, W., Deckelbaum, R. J., & Kris-Etherton, P. M. (2011). Effects of almond consumption on the reduction of LDL-cholesterol: a discussion of potential mechanisms and future research directions. Nutrition Reviews, 69(4), 171-185. doi:10.1111/j.1753-4887.2011.00383.xGrassby, T., Mandalari, G., Grundy, M. M.-L., Edwards, C. H., Bisignano, C., Trombetta, D., … Waldron, K. W. (2017). In vitro and in vivo modeling of lipid bioaccessibility and digestion from almond muffins: The importance of the cell-wall barrier mechanism. Journal of Functional Foods, 37, 263-271. doi:10.1016/j.jff.2017.07.046Becker, T. (2000). Consumer perception of fresh meat quality: a framework for analysis. British Food Journal, 102(3), 158-176. doi:10.1108/00070700010371707Abbott, J. A. (1999). Quality measurement of fruits and vegetables. Postharvest Biology and Technology, 15(3), 207-225. doi:10.1016/s0925-5214(98)00086-6Nanos, G. D., Kazantzis, I., Kefalas, P., Petrakis, C., & Stavroulakis, G. G. (2002). Irrigation and harvest time affect almond kernel quality and composition. Scientia Horticulturae, 96(1-4), 249-256. doi:10.1016/s0304-4238(02)00078-xSánchez-Bel, P., Egea, I., Martínez-Madrid, M. C., Flores, B., & Romojaro, F. (2008). Influence of Irrigation and Organic/Inorganic Fertilization on Chemical Quality of Almond (Prunus amygdaluscv. Guara). Journal of Agricultural and Food Chemistry, 56(21), 10056-10062. doi:10.1021/jf8012212Shahidi, F. (2006). Functional Foods: Their Role in Health Promotion and Disease Prevention. Journal of Food Science, 69(5), R146-R149. doi:10.1111/j.1365-2621.2004.tb10727.xBlomhoff, R., Carlsen, M. H., Andersen, L. F., & Jacobs, D. R. (2006). Health benefits of nuts: potential role of antioxidants. British Journal of Nutrition, 96(S2), S52-S60. doi:10.1017/bjn20061864Chen, C.-Y., Lapsley, K., & Blumberg, J. (2006). A nutrition and health perspective on almonds. Journal of the Science of Food and Agriculture, 86(14), 2245-2250. doi:10.1002/jsfa.2659Milbury, P. E., Chen, C.-Y., Dolnikowski, G. G., & Blumberg, J. B. (2006). Determination of Flavonoids and Phenolics and Their Distribution in Almonds. Journal of Agricultural and Food Chemistry, 54(14), 5027-5033. doi:10.1021/jf0603937Wijeratne, S. S. K., Amarowicz, R., & Shahidi, F. (2006). Antioxidant activity of almonds and their by-products in food model systems. Journal of the American Oil Chemists’ Society, 83(3), 223. doi:10.1007/s11746-006-1197-8Toles, C. A., Marshall, W. E., Johns, M. M., Wartelle, L. H., & McAloon, A. (2000). Acid-activated carbons from almond shells: physical, chemical and adsorptive properties and estimated cost of production. Bioresource Technology, 71(1), 87-92. doi:10.1016/s0960-8524(99)00029-2Mandalari, G., Faulks, R. M., Bisignano, C., Waldron, K. W., Narbad, A., & Wickham, M. S. J. (2010). In vitro evaluation of the prebiotic properties of almond skins (Amygdalus communisL.). FEMS Microbiology Letters, 304(2), 116-122. doi:10.1111/j.1574-6968.2010.01898.xChen, C.-Y., Milbury, P. E., Lapsley, K., & Blumberg, J. B. (2005). Flavonoids from Almond Skins Are Bioavailable and Act Synergistically with Vitamins C and E to Enhance Hamster and Human LDL Resistance to Oxidation. The Journal of Nutrition, 135(6), 1366-1373. doi:10.1093/jn/135.6.1366Monagas, M., Garrido, I., Lebrón-Aguilar, R., Bartolome, B., & Gómez-Cordovés, C. (2007). Almond (Prunus dulcis(Mill.) D.A. Webb) Skins as a Potential Source of Bioactive Polyphenols. Journal of Agricultural and Food Chemistry, 55(21), 8498-8507. doi:10.1021/jf071780zMonagas, M., Garrido, I., Lebrón-Aguilar, R., Gómez-Cordovés, M. C., Rybarczyk, A., Amarowicz, R., & Bartolomé, B. (2009). Comparative Flavan-3-ol Profile and Antioxidant Capacity of Roasted Peanut, Hazelnut, and Almond Skins. Journal of Agricultural and Food Chemistry, 57(22), 10590-10599. doi:10.1021/jf901391aMandalari, G., Tomaino, A., Arcoraci, T., Martorana, M., Turco, V. L., Cacciola, F., … Wickham, M. S. J. (2010). Characterization of polyphenols, lipids and dietary fibre from almond skins (Amygdalus communis L.). Journal of Food Composition and Analysis, 23(2), 166-174. doi:10.1016/j.jfca.2009.08.015Ledbetter, C. A. (2008). Shell cracking strength in almond (Prunus dulcis [Mill.] D.A. Webb.) and its implication in uses as a value-added product. Bioresource Technology, 99(13), 5567-5573. doi:10.1016/j.biortech.2007.10.059Homedes, J. M., Roura, E., Keim, N. L., & Brown, D. L. (1993). Almond hulls in swine diet reduce body fat. California Agriculture, 47(3), 27-28. doi:10.3733/ca.v047n03p27Sang, S., Lapsley, K., Rosen, R. T., & Ho, C.-T. (2002). New Prenylated Benzoic Acid and Other Constituents from Almond Hulls (Prunus amygdalusBatsch). Journal of Agricultural and Food Chemistry, 50(3), 607-609. doi:10.1021/jf0110194Pinelo, M., Rubilar, M., Sineiro, J., & Núñez, M. J. (2004). Extraction of antioxidant phenolics from almond hulls ( Prunus amygdalus ) and pine sawdust ( Pinus pinaster ). Food Chemistry, 85(2), 267-273. doi:10.1016/j.foodchem.2003.06.020Amico, V., Barresi, V., Condorelli, D., Spatafora, C., & Tringali, C. (2006). Antiproliferative Terpenoids from Almond Hulls (Prunus dulcis):  Identification and Structure−Activity Relationships. Journal of Agricultural and Food Chemistry, 54(3), 810-814. doi:10.1021/jf052812qRubilar, M., Pinelo, M., Shene, C., Sineiro, J., & Nuñez, M. J. (2007). Separation and HPLC-MS Identification of Phenolic Antioxidants from Agricultural Residues: Almond Hulls and Grape Pomace. Journal of Agricultural and Food Chemistry, 55(25), 10101-10109. doi:10.1021/jf0721996Barreira, J. C. M., Ferreira, I. C. F. R., Oliveira, M. B. P. P., & Pereira, J. A. (2010). Antioxidant Potential of Chestnut (Castanea sativa L.) and Almond (Prunus dulcis L.) By-products. Food Science and Technology International, 16(3), 209-216. doi:10.1177/1082013209353983Moure, A., Pazos, M., Medina, I., Domínguez, H., & Parajó, J. C. (2007). Antioxidant activity of extracts produced by solvent extraction of almond shells acid hydrolysates. Food Chemistry, 101(1), 193-201. doi:10.1016/j.foodchem.2006.01.017Mandalari, G., Arcoraci, T., Martorana, M., Bisignano, C., Rizza, L., Bonina, F., … Tomaino, A. (2013). Antioxidant and Photoprotective Effects of Blanch Water, a Byproduct of the Almond Processing Industry. Molecules, 18(10), 12426-12440. doi:10.3390/molecules181012426Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55(6), 481-504. doi:10.1016/s0031-9422(00)00235-1Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P. E., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxidants & Redox Signaling, 18(14), 1818-1892. doi:10.1089/ars.2012.4581Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727-747. doi:10.1093/ajcn/79.5.727Falcone Ferreyra, M. L., Rius, S. P., & Casati, P. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3. doi:10.3389/fpls.2012.00222Sevenet, T. (1996). Phytochemistry of medicinal plants. Biochimie, 78(4), 291-292. doi:10.1016/0300-9084(96)82199-7Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples. Molecules, 15(12), 8813-8826. doi:10.3390/molecules15128813Robbins, R. J. (2003). Phenolic Acids in Foods:  An Overview of Analytical Methodology. Journal of Agricultural and Food Chemistry, 51(10), 2866-2887. doi:10.1021/jf026182tKornsteiner, M., Wagner, K.-H., & Elmadfa, I. (2006). Tocopherols and total phenolics in 10 different nut types. Food Chemistry, 98(2), 381-387. doi:10.1016/j.foodchem.2005.07.033Garrido, I., Monagas, M., Gómez-Cordovés, C., & Bartolomé, B. (2008). Polyphenols and Antioxidant Properties of Almond Skins: Influence of Industrial Processing. Journal of Food Science, 73(2), C106-C115. doi:10.1111/j.1750-3841.2007.00637.xTakeoka, G. R., & Dao, L. T. (2003). Antioxidant Constituents of Almond [Prunus dulcis(Mill.) D.A. Webb] Hulls. Journal of Agricultural and Food Chemistry, 51(2), 496-501. doi:10.1021/jf020660iArráez-Román, D., Fu, S., Sawalha, S. M. S., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). HPLC/CE-ESI-TOF-MS methods for the characterization of polyphenols in almond-skin extracts. ELECTROPHORESIS, 31(13), 2289-2296. doi:10.1002/elps.200900679Smeriglio, A., Mandalari, G., Bisignano, C., Filocamo, A., Barreca, D., Bellocco, E., & Trombetta, D. (2016). Polyphenolic content and biological properties of Avola almond (Prunus dulcis Mill. D.A. Webb) skin and its industrial byproducts. Industrial Crops and Products, 83, 283-293. doi:10.1016/j.indcrop.2015.11.089Bolling, B. W., Dolnikowski, G., Blumberg, J. B., & Oliver Chen, C. Y. (2009). Quantification of Almond Skin Polyphenols by Liquid Chromatography-Mass Spectrometry. Journal of Food Science, 74(4), C326-C332. doi:10.1111/j.1750-3841.2009.01133.xFrison-Norrie, S., & Sporns, P. (2002). Identification and Quantification of Flavonol Glycosides in Almond Seedcoats Using MALDI-TOF MS. Journal of Agricultural and Food Chemistry, 50(10), 2782-2787. doi:10.1021/jf0115894Kordali, S., Cakir, A., Mavi, A., Kilic, H., & Yildirim, A. (2005). Screening of Chemical Composition and Antifungal and Antioxidant Activities of the Essential Oils from Three TurkishArtemisiaSpecies. Journal of Agricultural and Food Chemistry, 53(5), 1408-1416. doi:10.1021/jf048429nKedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412-422. doi:10.1007/s13197-011-0251-1Pisoschi, A. M., & Negulescu, G. P. (2012). Methods for Total Antioxidant Activity Determination: A Review. Biochemistry & Analytical Biochemistry, 01(01). doi:10.4172/2161-1009.1000106Chen, C.-Y. O., & Blumberg, J. B. (2008). In Vitro Activity of Almond Skin Polyphenols for Scavenging Free Radicals and Inducing Quinone Reductase. Journal of Agricultural and Food Chemistry, 56(12), 4427-4434. doi:10.1021/jf800061zBolling, B. W., Blumberg, J. B., & Oliver Chen, C.-Y. (2010). The influence of roasting, pasteurisation, and storage on the polyphenol content and antioxidant capacity of California almond skins. Food Chemistry, 123(4), 1040-1047. doi:10.1016/j.foodchem.2010.05.058Frison, S., & Sporns, P. (2002). Variation in the Flavonol Glycoside Composition of Almond Seedcoats As Determined by MALDI-TOF Mass Spectrometry. Journal of Agricultural and Food Chemistry, 50(23), 6818-6822. doi:10.1021/jf020661aBolling, B. W. (2017). Almond Polyphenols: Methods of Analysis, Contribution to Food Quality, and Health Promotion. Comprehensive Reviews in Food Science and Food Safety, 16(3), 346-368. doi:10.1111/1541-4337.12260Bartolomé, B., Monagas, M., Garrido, I., Gómez-Cordovés, C., Martín-Álvarez, P. J., Lebrón-Aguilar, R., … Andrés-Lacueva, C. (2010). Almond (Prunus dulcis (Mill.) D.A. Webb) polyphenols: From chemical characterization to targeted analysis of phenolic metabolites in humans. Archives of Biochemistry and Biophysics, 501(1), 124-133. doi:10.1016/j.abb.2010.03.020Hughey, C. A., Janusziewicz, R., Minardi, C. S., Phung, J., Huffman, B. A., Reyes, L., … Prakash, A. (2012). Distribution of almond polyphenols in blanch water and skins as a function of blanching time and temperature. Food Chemistry, 131(4), 1165-1173. doi:10.1016/j.foodchem.2011.09.093Fisklements, M., & Barrett, D. M. (2014). Kinetics of almond skin separation as a function of blanching time and temperature. Journal of Food Engineering, 138, 11-16. doi:10.1016/j.jfoodeng.2014.03.012Ingelfinger, F. J. (1973). International Journal of Epidemiology. New England Journal of Medicine, 288(8), 418-418. doi:10.1056/nejm197302222880814González-Castejón, M., & Rodriguez-Casado, A. (2011). Dietary phytochemicals and their potential effects on obesity: A review. Pharmacological Research, 64(5), 438-455. doi:10.1016/j.phrs.2011.07.004Kakkar, S., & Bais, S. (2014). A Review on Protocatechuic Acid and Its Pharmacological Potential. ISRN Pharmacology, 2014, 1-9. doi:10.1155/2014/952943Mandalari, G., Bisignano, C., D’Arrigo, M., Ginestra, G., Arena, A., Tomaino, A., & Wickham, M. S. J. (2010). Antimicrobial potential of polyphenols extracted from almond skins. Letters in Applied Microbiology, no-no. doi:10.1111/j.1472-765x.2010.02862.xMandalari, G., Bisignano, C., Genovese, T., Mazzon, E., Wickham, M. S. J., Paterniti, I., & Cuzzocrea, S. (2011). Natural almond skin reduced oxidative stress and inflammation in an experimental model of inflammatory bowel disease. International Immunopharmacology, 11(8), 915-924. doi:10.1016/j.intimp.2011.02.003Liu, Z., Lin, X., Huang, G., Zhang, W., Rao, P., & Ni, L. (2014). Prebiotic effects of almonds and almond skins on intestinal microbiota in healthy adult humans. Anaerobe, 26, 1-6. doi:10.1016/j.anaerobe.2013.11.007Bisignano, C., Mandalari, G., Smeriglio, A., Trombetta, D., Pizzo, M., Pennisi, R., & Sciortino, M. (2017). Almond Skin Extracts Abrogate HSV-1 Replication by Blocking Virus Binding to the Cell. Viruses, 9(7), 178. doi:10.3390/v9070178Mandalari, G., Tomaino, A., Rich, G. T., Lo Curto, R., Arcoraci, T., Martorana, M., … Wickham, M. S. J. (2010). Polyphenol and nutrient release from skin of almonds during simulated human digestion. Food Chemistry, 122(4), 1083-1088. doi:10.1016/j.foodchem.2010.03.079Mandalari, G., Vardakou, M., Faulks, R., Bisignano, C., Martorana, M., Smeriglio, A., & Trombetta, D. (2016). Food Matrix Effects of Polyphenol Bioaccessibility from Almond Skin during Simulated Human Digestion. Nutrients, 8(9), 568. doi:10.3390/nu8090568Parkar, S. G., Stevenson, D. E., & Skinner, M. A. (2008). The potential influence of fruit polyphenols on colonic microflora and human gut health. International Journal of Food Microbiology, 124(3), 295-298. doi:10.1016/j.ijfoodmicro.2008.03.017Fadel, J. . (1999). Quantitative analyses of selected plant by-product feedstuffs, a global perspective. Animal Feed Science and Technology, 79(4), 255-268. doi:10.1016/s0377-8401(99)00031-0Renewable Energy Production from Almond Wastehttp://www.australianalmonds.com.auChalker-Scott, L. (2007). Impact of Mulches on Landscape Plants and the Environment — A Review. Journal of Environmental Horticulture, 25(4), 239-249. doi:10.24266/0738-2898-25.4.239López, R., Burgos, P., Hermoso, J. M., Hormaza, J. I., & González-Fernández, J. J. (2014). Long term changes in soil properties and enzyme activities after almond shell mulching in avocado organic production. Soil and Tillage Research, 143, 155-163. doi:10.1016/j.still.2014.06.004Urrestarazu, M., Martínez, G. A., & Salas, M. del C. (2005). Almond shell waste: possible local rockwool substitute in soilless crop culture. Scientia Horticulturae, 103(4), 453-460. doi:10.1016/j.scienta.2004.06.011Urrestarazu, M., Mazuela, P. C., & Martínez, G. A. (2008). Effect of Substrate Reutilization on Yield and Properties of Melon and Tomato Crops. Journal of Plant Nutrition, 31(11), 2031-2043. doi:10.1080/01904160802405420Valverde, M., Madrid, R., García, A. L., Del Amor, F. M., & Rincón, L. F. (2013). Use of almond shell and almond hull as substrates for sweet pepper cultivation. Effects on fruit yield and mineral content. Spanish Journal of Agricultural Research, 11(1), 164. doi:10.5424/sjar/2013111-3566Heschel, W., & Klose, E. (1995). On the suitability of agricultural by-products for the manufacture of granular activated carbon. Fuel, 74(12), 1786-1791. doi:10.1016/0016-2361(95)80009-7Hayashi, J., Horikawa, T., Takeda, I., Muroyama, K., & Nasir Ani, F. (2002). Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon, 40(13), 2381-2386. doi:10.1016/s0008-6223(02)00118-5Urruzola, I., Robles, E., Serrano, L., & Labidi, J. (2014). Nanopaper from almond (Prunus dulcis) shell. Cellulose, 21(3), 1619-1629. doi:10.1007/s10570-014-0238-yErdem İşmal, Ö., Yıldırım, L., & Özdoğan, E. (2014). Use of almond shell extracts plus biomordants as effective textile dye. Journal of Cleaner Production, 70, 61-67. doi:10.1016/j.jclepro.2014.01.055Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science & Technology, 26(2), 68-87. doi:10.1016/j.tifs.2012.03.003Soto, M. L., Moure, A., Domínguez, H., & Parajó, J. C. (2011). Recovery, concentration and purification of phenolic compounds by adsorption: A review. Journal of Food Engineering, 105(1), 1-27. doi:10.1016/j.jfoodeng.2011.02.010Liu, X., Tang, Y., Wei, S., Yu, H., Lv, H., & Ge, H. (2010). ISOLATION AND PURIFICATION OF PHENOLIC COMPOUNDS FROM MAGNOLIAE OFFICINALIS BY PREPARATIVE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY. Journal of Liquid Chromatography & Related Technologies,
    corecore