3,312 research outputs found

    Localizing coalescing massive black hole binaries with gravitational waves

    Full text link
    Massive black hole binary coalescences are prime targets for space-based gravitational wave (GW) observatories such as {\it LISA}. GW measurements can localize the position of a coalescing binary on the sky to an ellipse with a major axis of a few tens of arcminutes to a few degrees, depending on source redshift, and a minor axis which is 2−42 - 4 times smaller. Neglecting weak gravitational lensing, the GWs would also determine the source's luminosity distance to better than percent accuracy for close sources, degrading to several percent for more distant sources. Weak lensing cannot, in fact, be neglected and is expected to limit the accuracy with which distances can be fixed to errors no less than a few percent. Assuming a well-measured cosmology, the source's redshift could be inferred with similar accuracy. GWs alone can thus pinpoint a binary to a three-dimensional ``pixel'' which can help guide searches for the hosts of these events. We examine the time evolution of this pixel, studying it at merger and at several intervals before merger. One day before merger, the major axis of the error ellipse is typically larger than its final value by a factor of ∌1.5−6\sim 1.5-6. The minor axis is larger by a factor of ∌2−9\sim 2-9, and, neglecting lensing, the error in the luminosity distance is larger by a factor of ∌1.5−7\sim 1.5-7. This large change over a short period of time is due to spin-induced precession, which is strongest in the final days before merger. The evolution is slower as we go back further in time. For z=1z = 1, we find that GWs will localize a coalescing binary to within $\sim 10\ \mathrm{deg}^2$ as early as a month prior to merger and determine distance (and hence redshift) to several percent.Comment: 30 pages, 10 figures, 5 tables. Version published in Ap

    Measuring parameters of massive black hole binaries with partially aligned spins

    Get PDF
    The future space-based gravitational wave detector LISA will be able to measure parameters of coalescing massive black hole binaries, often to extremely high accuracy. Previous work has demonstrated that the black hole spins can have a strong impact on the accuracy of parameter measurement. Relativistic spin-induced precession modulates the waveform in a manner which can break degeneracies between parameters, in principle significantly improving how well they are measured. Recent studies have indicated, however, that spin precession may be weak for an important subset of astrophysical binary black holes: those in which the spins are aligned due to interactions with gas. In this paper, we examine how well a binary's parameters can be measured when its spins are partially aligned and compare results using waveforms that include higher post-Newtonian harmonics to those that are truncated at leading quadrupole order. We find that the weakened precession can substantially degrade parameter estimation. This degradation is particularly devastating for the extrinsic parameters sky position and distance. Absent higher harmonics, LISA typically localizes the sky position of a nearly aligned binary a factor of ∌6\sim 6 less accurately than for one in which the spin orientations are random. Our knowledge of a source's sky position will thus be worst for the gas-rich systems which are most likely to produce electromagnetic counterparts. Fortunately, higher harmonics of the waveform can make up for this degradation. By including harmonics beyond the quadrupole in our waveform model, we find that the accuracy with which most of the binary's parameters are measured can be substantially improved. In some cases, parameters can be measured as well in partially aligned binaries as they can be when the binary spins are random.Comment: 18 pages, 16 figures, version accepted by PRD (with improved distributions of partially aligned spins

    Two-dimensional Hubbard-Holstein bipolaron

    Full text link
    We present a diagrammatic Monte Carlo study of the properties of the Hubbard-Holstein bipolaron on a two-dimensional square lattice. With a small Coulomb repulsion, U, and with increasing electron-phonon interaction, and when reaching a value about two times smaller than the one corresponding to the transition of light polaron to heavy polaron, the system suffers a sharp transition from a state formed by two weakly bound light polarons to a heavy, strongly bound on-site bipolaron. Aside from this rather conventional bipolaron a new bipolaron state is found for large U at intermediate and large electron-phonon coupling, corresponding to two polarons bound on nearest-neighbor sites. We discuss both the properties of the different bipolaron states and the transition from one state to another. We present a phase diagram in parameter space defined by the electron-phonon coupling and U. Our numerical method does not use any artificial approximation and can be easily modified to other bipolaron models with longer range electron-phonon and/or electron-electron interaction.Comment: 14 pages, 12 figure

    Suggestion, hypnosis and hypnotherapy: a survey of use, knowledge and attitudes of anaesthetists

    Get PDF
    Publisher's copy made available with the permission of the publisher © Australian Society of AnaesthetistsClinical hypnosis is a skill of using words and gestures (frequently called suggestions) in particular ways to achieve specific outcomes. It is being increasingly recognised as a useful intervention for managing a range of symptoms, especially pain and anxiety. We surveyed all 317 South Australian Fellows and trainees registered with ANZCA to determine their use, knowledge of, and attitudes towards positive suggestion, hypnosis and hypnotherapy in their anaesthesia practice. The response rate was 218 anaesthetists (69%). The majority of respondents (63%) rated their level of knowledge on this topic as below average. Forty-eight per cent of respondents indicated that there was a role for hypnotherapy in clinical anaesthesia, particularly in areas seen as traditional targets for the modality, i.e. pain and anxiety states. Nearly half of the anaesthetists supported the use of hypnotherapy and positive suggestions within clinical anaesthesia. Those respondents who had experience of clinical hypnotherapy were more likely to support hypnosis teaching at undergraduate or postgraduate level when compared with those with no experience.http://www.aaic.net.au/Article.asp?D=200408

    Linear iterated pushdowns

    Get PDF
    This paper discusses variants of nondeterministic one-way S-automata and context-free S-grammars where S is a storage type. The framework that these systems provide can be used to give alternative formulations of embedded pushdown automata and linear indexed grammars. The embedded pushdown automata is obtained by means of a linear version of a class of storage types called iterated pushdowns. Linear indexed grammar is obtained by using the pushdown storage type and restricting the way in which the grammar uses its storage

    SRMS as a Novel Therapeutic Target in Gastric Cancer Peritoneal Metastases

    Get PDF
    https://openworks.mdanderson.org/sumexp21/1233/thumbnail.jp

    Advanced localization of massive black hole coalescences with LISA

    Full text link
    The coalescence of massive black holes is one of the primary sources of gravitational waves (GWs) for LISA. Measurements of the GWs can localize the source on the sky to an ellipse with a major axis of a few tens of arcminutes to a few degrees, depending on source redshift, and a minor axis which is 2--4 times smaller. The distance (and thus an approximate redshift) can be determined to better than a per cent for the closest sources we consider, although weak lensing degrades this performance. It will be of great interest to search this three-dimensional `pixel' for an electromagnetic counterpart to the GW event. The presence of a counterpart allows unique studies which combine electromagnetic and GW information, especially if the counterpart is found prior to final merger of the holes. To understand the feasibility of early counterpart detection, we calculate the evolution of the GW pixel with time. We find that the greatest improvement in pixel size occurs in the final day before merger, when spin precession effects are maximal. The source can be localized to within 10 square degrees as early as a month before merger at z=1z = 1; for higher redshifts, this accuracy is only possible in the last few days.Comment: 11 pages, 4 figures, version published in Classical and Quantum Gravity (special issue for proceedings of 7th International LISA Symposium

    Neutral hydrogen surveys for high redshift galaxy clusters and proto-clusters

    Get PDF
    We discuss the possibility of performing blind surveys to detect large-scale features of the universe using 21cm emission. Using instruments with approx. 5'-10' resolution currently in the planning stage, it should be possible to detect virialized galaxy clusters at intermediate redshifts using the combined emission from their constituent galaxies, as well as less overdense structures, such as proto-clusters and the `cosmic web', at higher redshifts. Using semi-analytic methods we compute the number of virialized objects and those at turnaround which might be detected by such surveys. We find a surprisingly large number of objects might be detected even using small (approx. 5%) bandwidths and elaborate on some issues pertinent to optimising the design of the instrument and the survey strategy. The main uncertainty is the fraction of neutral gas relative to the total dark matter within the object. We discuss this issue in the context of the observations which are currently available.Comment: 10 pages, 6 figure
    • 

    corecore