43 research outputs found

    Coherent wave activity in Mercury's magnetosheath

    Full text link
    This study presents a statistical overview of coherent wave activity in Mercury's magnetosheath. Left‐handed electromagnetic ion cyclotron waves are commonly found behind the quasi‐perpendicular section of the bow shock, where they are present in ~50% of the spacecraft crossings of the magnetosheath. Their occurrence distribution maximizes within the magnetosheath, approximately halfway between the bow shock and the magnetopause, and the waves are generally strongly Doppler shifted up to frequencies above the local ion cyclotron frequency. Downstream of the quasi‐parallel shock, the magnetosheath often exhibits large‐amplitude pulsations with wave periods around 10 s and peak‐to‐peak amplitudes of up to 100 nT that dominate the magnetic field structure. These waves are circularly left‐hand polarized with wave vectors in the direction of the local shock normal. The data suggest that they have been generated upstream of the shock and transmitted into the downstream region. Their occurrence rates maximize at the near‐parallel shock, where they are present approximately 10% of the time, and where they also show their largest wave powers. Some evidence is also found of waves with a right‐handed polarization in the spacecraft frame. These consist of both whistler waves above the local ion cyclotron frequency and ion cyclotron waves propagating against the magnetosheath flow with Doppler shifts exceeding the intrinsic wave frequency, which results in a change in their apparent polarization. These waves are in minority compared to the left‐handed observations, which indicates a preference for ion cyclotron waves propagating in the direction of the plasma flow.Key PointsWe investigate the properties of magnetosheath waves at MercuryIon cyclotron waves are common in the magnetosheath downstream of the quasi‐perpendicular shockLarge‐amplitude waves up to 100 nT peak to peak are observed downstream of the quasi‐parallel shockPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/115984/1/jgra52042_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/115984/2/jgra52042.pd

    Survey of Coherent Approximately 1 Hz Waves in Mercury's Inner Magnetosphere from MESSENGER Observations

    Get PDF
    We summarize observations by the MESSENGER spacecraft of highly coherent waves at frequencies between 0.4 and 5 Hz in Mercury's inner magnetosphere. This survey covers the time period from 24 March to 25 September 2011, or 2.1 Mercury years. These waves typically exhibit banded harmonic structure that drifts in frequency as the spacecraft traverses the magnetic equator. The waves are seen at all magnetic local times, but their observed rate of occurrence is much less on the dayside, at least in part the result of MESSENGER's orbit. On the nightside, on average, wave power is maximum near the equator and decreases with increasing magnetic latitude, consistent with an equatorial source. When the spacecraft traverses the plasma sheet during its equatorial crossings, wave power is a factor of 2 larger than for equatorial crossings that do not cross the plasma sheet. The waves are highly transverse at large magnetic latitudes but are more compressional near the equator. However, at the equator the transverse component of these waves increases relative to the compressional component as the degree of polarization decreases. Also, there is a substantial minority of events that are transverse at all magnetic latitudes, including the equator. A few of these latter events could be interpreted as ion cyclotron waves. In general, the waves tend to be strongly linear and characterized by values of the ellipticity less than 0.3 and wave-normal angles peaked near 90 deg. Their maxima in wave power at the equator coupled with their narrow-band character suggests that these waves might be generated locally in loss cone plasma characterized by high values of the ratio beta of plasma pressure to magnetic pressure. Presumably both electromagnetic ion cyclotron waves and electromagnetic ion Bernstein waves can be generated by ion loss cone distributions. If proton beta decreases with increasing magnetic latitude along a field line, then electromagnetic ion Bernstein waves are predicted to transition from compressional to transverse, a pattern consistent with our observations. We hypothesize that these local instabilities can lead to enhanced ion precipitation and directly feed field-line resonances

    Terrestrial Myriametric Radio Burst Observed by IMAGE and Geotail Satellites

    Get PDF
    We report IMAGE and Geotail simultaneous observations of a terrestrial myriametric radio burst (TMRB) detected on August 19, 2001. The TMRB was confined in time (0830-1006 UT) and frequency (12-50 kHz), suggesting a fan beam-like emission pattern from a single discrete source. Analysis and comparisons with existing TMR radiations strongly suggest that the TMRB is a distinct emission perhaps resulting from dayside magnetic reconnection instigated by northward interplanetary field condition

    Correlation Between Low Frequency Auroral Kilometric Radiation (AKR) and Auroral Structures

    Get PDF
    Auroral Kilometric Radiation (AKR) is a radio wave emission that has long been associated with auroral activity. AKR is normally observed in the frequency range from -60 - 600 kHz. Low frequency AKR (or LF-AKR) events are characterized as a rapid extension of AKR related emissions to 30 kHz or lower in frequency for typically much less than 10 minutes. LF-AKR emissions predominantly occur within a frequency range of 20 kHz - 30 kHz, but there are LF-AKR related emissions that reach to a frequency of 5 kHz. This study correlates all instances of LF-AKR events during the first four years of observations from the IMAGE spacecraft's Radio Plasma Imager (WI) instrument with auroral observations from the wideband imaging camera (WIC) onboard IMAGE. The correlation between LF-AKR occurrence and WIC auroral observations shows that in the 295 confirmed cases of LF-AKR emissions, bifurcation of the aurora is seen in 74% of the cases. The bifurcation is seen in the dusk and midnight sectors of the auroral oval, where AKR is believed to be generated. The polarization of these LF-AKR emissions has yet to be identified. Although LF-AKR may not be the only phenomena correlated with bifurcated auroral structures, bifurcation will occur in most instances when LF-AKR is observed. The LF-AKR emissions may be an indicator of specific auroral processes sometimes occurring during storm-time conditions in which field-aligned density cavities extend a distance of perhaps 5-6 RE tailward from the Earth for a period of 10 minutes or less

    Reconstruction of Propagating Kelvin-Helmholtz Vortices at Mercury's Magnetopause

    Get PDF
    A series of quasi-periodic magnetopause crossings were recorded by the MESSENGER spacecraft during its third flyby of Mercury on 29 September 2009, likely caused by a train of propagating Kelvin-Helmholtz (KH) vortices. We here revisit the observations to study the internal structure of the waves. Exploiting MESSENGER s rapid traversal of the magnetopause, we show that the observations permit a reconstruction of the structure of a rolled-up KH vortex directly from the spacecraft s magnetic field measurements. The derived geometry is consistent with all large-scale fluctuations in the magnetic field data, establishes the non-linear nature of the waves, and shows their vortex-like structure. In several of the wave passages, a reduction in magnetic field strength is observed in the middle of the wave, which is characteristic of rolled-up vortices and is related to the increase in magnetic pressure required to balance the centrifugal force on the plasma in the outer regions of a vortex, previously reported in computer simulations. As the KH wave starts to roll up, the reconstructed geometry suggests that the vortices develop two gradual transition regions in the magnetic field, possibly related to the mixing of magnetosheath and magnetospheric plasma, situated at the leading edges from the perspectives of both the magnetosphere and the magnetosheath

    Cyclic reformation of a quasi-parallel bow shock at Mercury: MESSENGER observations

    Get PDF
    [1] We here document with magnetic field observations a passage of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft through Mercury's magnetosphere under conditions of a quasi-parallel bow shock, i.e., when the direction of the upstream interplanetary magnetic field was within 45° of the bow shock normal. The spacecraft's fast transition of the magnetosheath and the steady solar wind conditions during the period analyzed allow both spatial and temporal properties of the shock crossing to be investigated. The observations show that the shock reformation process can be nearly periodic under stable solar wind conditions. Throughout the 25-min-long observation period, the pulsation duration deviated by at most ~10% from the average 10 s period measured. This quasiperiodicity allows us to study all aspects of the shock reconfiguration, including ultra-low-frequency waves in the upstream region and large-amplitude magnetic structures observed in the vicinity of the magnetosheath-solar wind transition region and inside the magnetosheath. We also show that bow shock reformation can be a substantial source of wave activity in the magnetosphere, on this occasion having given rise to oscillations in the magnetic field with peak-to-peak amplitudes of 40–50 nT over large parts of the dayside magnetosphere. The clean and cyclic behavior observed throughout the magnetosphere, the magnetosheath, and the upstream region indicates that the subsolar region was primarily influenced by a cyclic reformation of the shock front, rather than by a spatial and temporal patchwork of short large-amplitude magnetic structures, as is generally the case at the terrestrial bow shock under quasi-parallel conditions

    MESSENGER observations of solar energetic electrons within Mercury’s magnetosphere

    Get PDF
    During solar energetic particle (SEP) events, the inner heliosphere is bathed in MeV electrons. Through magnetic reconnection, these relativistic electrons can enter the magnetosphere of Mercury, nearly instantaneously filling the regions of open field lines with precipitating particles. With energies sufficient to penetrate solid aluminum shielding more than 1 mm thick, these electrons were observable by a number of sensors on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Because of its thin shielding, frequent sampling, and continuous temporal coverage, the Fast Imaging Plasma Spectrometer provided by far the most sensitive measurements of MeV electrons of all MESSENGER sensors. Sharp changes in energetic electron flux coincided with topological boundaries in the magnetosphere, including the magnetopause, polar cap, and central plasma sheet. Precipitating electrons with fluxes equal to ~40% of their corresponding upstream levels were measured over the entire polar cap, demonstrating that electron space weathering of Mercury’s surface is not limited to the cusp region. We use these distinct precipitation signatures acquired over 33 orbits during 11 SEP events to map the full extent of Mercury’s northern polar cap. We confirm a highly asymmetric polar cap, for which the dayside and nightside boundary latitudes range over ~50–70°N and ~30–60°N, respectively. These latitudinal ranges are consistent with average models of Mercury’s magnetic field but exhibit a large variability indicative of active dayside and nightside magnetic reconnection processes. Finally, we observed enhanced electron fluxes within the central plasma sheet. Although these particles cannot form a stable ring current around the planet, their motion results in an apparent trapped electron population at low latitudes in the magnetotail.Key PointsSolar energetic electrons map Mercury’s magnetospheric topologySolar wind electrons likely produce polar rain at MercuryMeV electrons can be quasi‐trapped in Mercury’s magnetotailPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136321/1/jgra52111.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136321/2/jgra52111_am.pd

    Properties, Propagation, and Excitation of EMIC Waves Properties, Propagation, and Excitation of EMIC Waves

    Get PDF
    Electromagnetic ion cyclotron (EMIC) waves (0.1-5 Hz) play an important role in particle dynamics in the Earth's magnetosphere. EMIC waves are preferentially excited in regions where hot anisotropic ions and cold dense plasma populations spatially overlap. While the generation region of EMIC waves is usually on or near the magnetic equatorial plane in the inner magnetosphere, EMIC waves have both equatorial and off-equator source regions on the dayside in the compressed outer magnetosphere. Using field and plasma measurements from the Magnetospheric Multiscale (MMS) mission, we perform a case study of EMIC waves and associated local plasma conditions observed on 19 October 2015. From 0315 to 0810 UT, before crossing the magnetopause into the magnetosheath, all four MMS spacecraft detected long-lasting He(exp +)-band EMIC wave emissions around local noon (MLT = 12.7 - 14.0) at high L-shells (L = 8.8 - 15.2) and low magnetic latitudes (MLAT = -21.8deg - -30.3deg). Energetic (greater than 1 keV) and anisotropic ions were present throughout this event that was in the recovery phase of a weak geomagnetic storm (min. Dst = -48 nT at 1000 UT on 18 October 2015). The testing of linear theory suggests that the EMIC waves were excited locally. Although the wave event is dominated by small normal angles, its polarization is mixed with right- and left-handedness and its propagation is bi-directional with regard to the background magnetic field. The short inter-spacecraft distances (as low as ~15 km) of the MMS mission make it possible to accurately determine the k vector of the waves using the phase difference technique. Preliminary analysis finds that the k vector magnitude, phase speed, and wavelength of the 0.3-Hz wave packet at 0453:55 UT are 0.005 km(exp -1), 372.9 km/s, and 1242.9 km, respectively
    corecore