34,707 research outputs found

    Process techniques study of integrated circuits Final scientific report

    Get PDF
    Surface impurity and structural defect analysis on thermally grown silicon oxide integrated circui

    High performance interior point methods for three-dimensional finite element limit analysis

    Get PDF
    The ability to obtain rigorous upper and lower bounds on collapse loads of various structures makes finite element limit analysis an attractive design tool. The increasingly high cost of computing those bounds, however, has limited its application on problems in three dimensions. This work reports on a high-performance homogeneous self-dual primal-dual interior point method developed for three-dimensional finite element limit analysis. This implementation achieves convergence times over 4.5× faster than the leading commercial solver across a set of three-dimensional finite element limit analysis test problems, making investigation of three dimensional limit loads viable. A comparison between a range of iterative linear solvers and direct methods used to determine the search direction is also provided, demonstrating the superiority of direct methods for this application. The components of the interior point solver considered include the elimination of and options for handling remaining free variables, multifrontal and supernodal Cholesky comparison for computing the search direction, differences between approximate minimum degree [1] and nested dissection [13] orderings, dealing with dense columns and fixed variables, and accelerating the linear system solver through parallelization. Each of these areas resulted in an improvement on at least one of the problems in the test set, with many achieving gains across the whole set. The serial implementation achieved runtime performance 1.7× faster than the commercial solver Mosek [5]. Compared with the parallel version of Mosek, the use of parallel BLAS routines in the supernodal solver saw a 1.9× speedup, and with a modified version of the GPU-enabled CHOLMOD [11] and a single NVIDIA Tesla K20c this speedup increased to 4.65×

    Fluctuations in Student Understanding of Newton's 3rd Law

    Full text link
    We present data from a between-student study on student response to questions on Newton's Third Law given throughout the academic year. The study, conducted at Rochester Institute of Technology, involved students from the first and third of a three-quarter sequence. Construction of a response curve reveals subtle dynamics in student learning not captured by simple pre/post testing. We find a a significant positive effect from direct instruction, peaking at the end of instruction on forces, that diminishes by the end of the quarter. Two quarters later, in physics III, a significant dip in correct response occurs when instruction changes from the vector quantities of electric forces and fields to the scalar quantity of electric potential. Student response rebounds to its initial values, however, once instruction returns to the vector-based topics involving magnetic fields.Comment: Proceedings of the 2010 Physics Education Research Conferenc

    Three dimensional lower bound solutions for the stability of plate anchors in sand

    Get PDF
    Soil anchors are commonly used as foundation systems for structures that require uplift or lateral resistance. These types of structures include transmission towers, sheet pile walls and buried pipelines. Although anchors are typically complex in shape (e.g. drag or helical anchors), many previous analyses idealise the anchor as a continuous strip under plane strain conditions. This assumption provides numerical advantages and the problem can solved in two dimensions. In contrast to recent numerical studies, this paper applies three dimensional numerical limit analysis and axi-symetrical displacement finite element analysis to evaluate the effect of anchor shape on the pullout capacity of horizontal anchors in sand. The anchor is idealised as either square or circular in shape. Results are presented in the familiar form of breakout factors based on various anchor shapes and embedment depths, and are also compared with existing numerical and empirical solutions

    The effect of the common bond and membership expansion on credit union risk

    Get PDF
    This paper examines differences in institutional risk profiles based on credit union membership type and membership expansion via “select employee groups,” or SEGs, which are now expressly allowed by the Credit Union Membership Access Act of 1998. A cross-sectional statistical model is specified that examines risk variation relative to the type of common bond and the breadth of the credit union’s membership. In findings that are consistent with earlier research, the authors document that occupationally based credit unions have a unique risk profile relative to other common bonds. This profile includes a greater exposure to concentration risk, which is hedged by holding greater proportions of capital. ; The authors also examine the subsample of Single-Bond occupational credit unions and those Multi-Bond credit unions with primarily occupational group members. They find that the presence of SEGs is negatively related to capital ratios and positively related to loan-to-share ratios relative to the Single-Bond occupational credit unions. The use of survey data documenting the number of SEGs confirms that, as more SEGs are added, credit unions tend to increase their loan-to-share ratios and decrease their capital ratios. However, the number of SEGs and the proportion of loan delinquencies are found to be positively related, suggesting that the informational advantages associated with the common bond become diluted as new groups are added. Overall, the authors conclude that there are material benefits of credit union membership diversification and that these benefits derive from expanded investment opportunities and reduced concentration risk.Credit unions ; Risk

    Design study of general aviation collision avoidance system

    Get PDF
    The selection and design of a time/frequency collision avoidance system for use in general aviation aircraft is discussed. The modifications to airline transport collision avoidance equipment which were made to produce the simpler general aviation system are described. The threat determination capabilities and operating principles of the general aviation system are illustrated

    Gate Voltage Controllable Non-Equilibrium and Non-Ohmic Behavior in Suspended Carbon Nanotubes

    Get PDF
    In this work, we measure the electrical conductance and temperature of individual, suspended quasi-metallic single-walled carbon nanotubes under high voltage biases using Raman spectroscopy, while varying the doping conditions with an applied gate voltage. By applying a gate voltage, the high-bias conductance can be switched dramatically between linear (Ohmic) behavior and nonlinear behavior exhibiting negative differential conductance (NDC). Phonon populations are observed to be in thermal equilibrium under Ohmic conditions but switch to nonequilibrium under NDC conditions. A typical Landauer transport model assuming zero bandgap is found to be inadequate to describe the experimental data. A more detailed model is presented, which incorporates the doping dependence in order to fit this data

    Analysis of Mesostructure Unit Cells Comprised of Octet-truss Structures

    Get PDF
    A unit truss finite element analysis method allowing non-linear deformation is employed to analyze a unit cell comprised of n 3 octet-truss structures for their stiffness and displacement compared to their relative density under loading. Axial, bending, shearing, and torsion effects are included in the analysis for each strut in the octet-truss structure which is then related to the mesostructure level (unit cell). The versatility of additive manufacturing allows for the fabrication of these complex unit cell truss structures which can be used as building blocks for macro-scale geometries. The finite element calculations are compared to experimental results for samples manufactured on a Stereolithography Apparatus (SLA) out of a standard resin.Mechanical Engineerin
    corecore