
High-Performance Interior Point Methods for Three-Dimensional Finite Element Limit Analy-
sis
N. Podlich, A. Lyamin and S. Sloan

XV International Conference on Computational Plasticity. Fundamentals and Applications
COMPLAS 2019

E. Oñate, D.R.J. Owen, D. Peric, M. Chiumenti & Eduardo de Souza Neto (Eds)

HIGH PERFORMANCE INTERIOR POINT METHODS FOR
THREE-DIMENSIONAL FINITE ELEMENT LIMIT

ANALYSIS

NATHAN C. PODLICH∗, ANDREI V. LYAMIN† AND SCOTT W. SLOAN†

∗University of Newcastle
Callaghan, NSW 2308, Australia

email nathan.podlich@newcastle.edu.au

† Centre for Geotechnical Science and Engineering
University of Newcastle

Callaghan, NSW 2308, Australia

Key words: finite element limit analysis, interior point methods, Cholesky factorization,
parallelization

Abstract. The ability to obtain rigorous upper and lower bounds on collapse loads
of various structures makes finite element limit analysis an attractive design tool. The
increasingly high cost of computing those bounds, however, has limited its application
on problems in three dimensions. This work reports on a high-performance homogeneous
self-dual primal-dual interior point method developed for three-dimensional finite element
limit analysis. This implementation achieves convergence times over 4.5× faster than the
leading commercial solver across a set of three-dimensional finite element limit analysis
test problems, making investigation of three dimensional limit loads viable. A comparison
between a range of iterative linear solvers and direct methods used to determine the
search direction is also provided, demonstrating the superiority of direct methods for this
application.

The components of the interior point solver considered include the elimination of and
options for handling remaining free variables, multifrontal and supernodal Cholesky com-
parison for computing the search direction, differences between approximate minimum
degree [1] and nested dissection [13] orderings, dealing with dense columns and fixed vari-
ables, and accelerating the linear system solver through parallelization. Each of these
areas resulted in an improvement on at least one of the problems in the test set, with
many achieving gains across the whole set. The serial implementation achieved runtime
performance 1.7× faster than the commercial solver Mosek [5]. Compared with the par-
allel version of Mosek, the use of parallel BLAS routines in the supernodal solver saw a
1.9× speedup, and with a modified version of the GPU-enabled CHOLMOD [11] and a single
NVIDIA Tesla K20c this speedup increased to 4.65×.

1

121

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/294830968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Nathan C. Podlich, Andrei V. Lyamin and Scott W. Sloan

1 INTRODUCTION

One of the most crucial aspects in the design of ground-based structures is the stability
of the supporting material, the soil. The upper and lower bound theorems of limit analysis
provide a useful methodology to address the stability of the supporting body [7]. A lower
bound on the true collapse load can be identified by finding a stress distribution which
satisfies the equilibrium equations and stress boundary conditions, and does not violate
the yield criterion at any point (a statically admissible stress field). An upper bound
to the true collapse load can be determined by equating the external rate of work to
the internal power dissipation through an assumed velocity field, and ensuring that the
velocity boundary conditions, and the strain and velocity compatibility conditions are
satisfied (a kinematically admissible velocity field). The availability of such a precise
measure of the error sets limit analysis apart from many other forms of numerical analysis
and makes it a very useful tool in predicting soil stability. Both the lower and upper bound
problems can be formulated as a convex optimization problem [14]:

maximize α

subject to BTσ = αp+ p0 (1)

f
(
σ(e)

)
≤ 0 ∀ e = 1, 2, ..., ne,

where α is the load multiplier, B is the standard finite element strain-displacement matrix,
p are the optimized loads, p0 are the prescribed tractions, σ(e) are the elemental stresses,
f is the convex yield function, and ne is the number of elements. If the yield function
can be cast in terms of a conic constraint then the problem can be solved directly by an
interior point method for conic optimization problems. The relevant conic constraints here
are the second-order cone and the semidefinite cone which can be used to represent the
Drucker-Prager and Mohr-Coulomb yield criteria in three dimensions, respectively. The
second-order cone constraint on the n-vector x restricts the values to those that satisfy
x0 ≥

√
x2
1 + x2

2 + ...+ x2
3. The semidefinite constraint on the n × n symmetric matrix

X requires zTXz ≥ 0 ∀ z ∈ �n. This paper is restricted to the former case using the
Drucker-Prager yield criterion in three dimensions with second-order conic constraints.

The bulk of the computational effort spent by interior point methods lies in determin-
ing the search direction at each iteration by solving a set of symmetric indefinite linear
equations known as the augmented equations

[
−D AT

A 0

]{
x
y

}
=

{
p
q

}
, (2)

(note that A = BT ) which is often reduced to the symmetric positive definite Schur com-
plement equation

AD−1ATy = AD−1p+ q. (3)

In this case, the coefficient matrix defing the search direction is a very sparse and very
large positive definite matrix that is increasingly ill-conditioned as an optimum point is
approached. Thus, the majority of the effort in enhancing the performance of the IPM is

2

122



Nathan C. Podlich, Andrei V. Lyamin and Scott W. Sloan

Figure 1: Test problems.

(c, φ, γ)

(a) Square excavation

σs

(c, φ)

(b) Square footing

σs

σt

DH

(c, φ, γ)

(c) Tunnel heading

focussed on Cholesky and Cholesky-like factorization routines. This paper steps through
the major choices in developing a state-of-the-art interior point solver for finite element
limit analysis using a simplified homogeneous self-dual embedded interior point method
[5]. The first section addresses the choice of linear solver, the second compares the two
main ordering approaches, the third section looks at improving the linear system defining
the search direction, and the fourth section compares the parallel performance against
the top commercial solver.

Figure 1 shows the three problems considered in the study. See Table 1 for details.
The problems are a square excavation in cohesive-frictional material (c = 1, φ = 1◦ and
γ = 1), a square footing on weightless cohesive material (c = 1), and a tunnel heading
in cohesive-frictional material (c = 1, φ = 10◦, γ = 0.5, cover of H = 4, diameter of
D = 2 and length L = 6). An angle of θ = 25◦ is used to determine α and k for the
Drucker-Prager criterion from c and φ. The UB2 problems use quadratic elements in their
formulation.

2 CHOICE OF LINEAR SOLVER

Because of the increasing ill-conditioning of the Schur complement as the IPM con-
verges, the use of a Cholesky solver generally requires some way of dealing with non-
positive pivots before taking the square root [18]. This can be achieved by allowing for
2× 2 block pivots as in a symmetric indefinite factorization or by using basic pivot mod-
ification strategies. For the comparisons here, a left-looking supernodal Cholesky routine
based on CHOLMOD [11] with a modified BLAS DPOTF2 subroutine that substitutes a
large value (1032 is used) for any diagonal entry that is less than or equal to zero. MA57

[9] was used for the multifrontal method and both options used the MC50 implementation
of the approximate minimum degree (AMD) ordering [9]. Free variables were split into
the difference of two linear variables. All sequential tests were run on an Apple MacBook
Pro with an Intel Core i7-3740QM 2.70GHz CPU with 16GB RAM.

3

123



Nathan C. Podlich, Andrei V. Lyamin and Scott W. Sloan

Table 1: Test problem details. The columns from left to right show the number of finite elements, the
number of velocity nodes, the number of stress nodes, nF is the number of free variables, m is the number
of equations in BT , n is the number of columns in BT , and nzB is the number of non-zero entries in B.

Problem Elements Velocity Stress nF m n nzB
sqexLB 265,632 265,632 155,136 271,488 1,034,703 1,202,304 6,123,526
sqexUB 337,920 196,608 337,920 944,064 1,517,567 2,971,584 9,477,630
sqexUB2 49,152 73,809 196,608 429,158 639,461 1,608,806 22,665,659
sqftLB 357,264 357,264 207,360 208,656 1,227,168 1,452,816 7,493,136
sqftUB 357,264 207,360 357,264 375,408 980,208 2,518,992 8,059,824
sqftUB2 51,840 77,257 207,360 219,750 439,757 1,463,910 22,945,686
tunhLB 561,240 561,240 326,016 335,736 1,998,455 2,291,832 15,051,585
tunhUB 561,240 326,016 561,240 600,984 1,549,007 3,968,424 15,794,780

The multifrontal method required a noticeable amount less storage for the factors than
did the supernodal factorization, albeit at a significant time cost. On a smaller set of the
same problems used here without the lower bound tunnel heading (which both options
failed to solve to the required accuracy), the multifrontal method had an average factor
non-zero count of 32 million entries and an average IPM convergence time of 188.7s com-
pared with the supernodal methods 38 million entries and average solution time of 78.8s.
The IPM using the supernodal solver was 27s-435s faster with a median improvement
of 46s. This is due to the better arrangement of level 3 dense BLAS operations in the
supernodal solver. The iteration counts were all the same ±2 except for the upper bound
tunnel heading where the IPM using the multifrontal solver took eight more iterations.
Based on these results, the supernodal factorization appears to be superior in terms of
computational speed and does not suffer from any severe robustness issues, although mul-
tiple problems did encounter numerical indefiniteness (i.e. very small or negative pivots
were encountered). For the remainder of the study, the supernodal factorization was used.

2.1 A note on iterative linear solvers

Iterative linear or Krylov-subspace solvers were tested on both the Schur complement
and augmented equations with a range of preconditioners [17]. The best approaches tested
used a robust incomplete Cholesky factorization preconditioner with the preconditioned
conjugate gradients solver. These approaches lacked robustness, failing to solve the lower
bound problems in most cases (and some of the upper bound problems) in the small test
set. For the problems in which the approaches were successful, the number of non-zero
entries in the preconditioner ranged from 44% to 145% (averages of 60% to 75%) of the
size of the factor computed in the approach developed below, with a total IPM runtime
8× to 181× slower (with an average around 70× slower). This improved slightly as the
problems became larger, although no improvement in the ability to solve the lower bound
problems was found [17]. The modest reduction in storage requirements did not overcome
the lack of robustness coupled with the significant increase in runtime to warrant further

4

124



Nathan C. Podlich, Andrei V. Lyamin and Scott W. Sloan

investigation of this approach.

3 SPARSITY-PRESERVING ORDERINGS

The two resources required by any factorization are storage and time. Both of these
are driven by the amount of fill-in in the factor and so good quality orderings that re-
duce fill-in can yield significant savings. The two main approaches in use for ordering
symmetric systems are the approximate minimum degree (AMD) and nested dissection
(ND) orderings. These two were compared using the supernodal Cholesky solver and split
free variables. The AMD ordering was computed by MC50 [9] while the ND ordering is
computed by METIS [13]. The number of IPM iterations, the total IPM solution time and
the number of non-zero entries in the Cholesky factor L are shown in Table 2.

The number of iterations was very similar, being identical for most problems and only
showing differences in a small number of problems where convergence had slowed. The
computation time of the ND ordering was, in general, longer than that of AMD, but this
could be amortized over the duration of the IPM and was more than compensated for in
the significant reduction in fill-in. The number of non-zeros in the Cholesky factor ranged
from 65% more to 181% more with the AMD ordering. On average, the ND ordering saved
111% over AMD. This led to the IPM with the AMD ordering running 2.4× to 7.7×, with
an average of 4.7×, that of the IPM with the ND ordering. The only problems that did
not converge to tolerance was the lower bound tunnel headings. From these results it is
clear that the nested dissection ordering is superior to AMD for these problems.

Table 2: Performance of solver improvements. nit is the number of IPM iterations, tT is the total IPM
solution time, and nzL is the number of non-zero entries in the Cholesky factor. PREG is the solver with
all improvements described.

AMD ND PREG Mosek

Problem nit tT nzL nit tT nzL nit tT nzL nit tT nzL
sqexLB 24 5,058 835 24 657 297 21 507 267 20 785 237
sqexUB 23 5,350 961 23 1,332 444 18 788 339 17 1,109 293
sqexUB2 55 6,901 556 61 1,942 270 16 248 139 24 523 128
sqftLB 24 7,834 1,079 24 1,636 503 24 1,588 485 20 3,432 564
sqftUB 25 5,947 886 25 1,721 467 21 1,114 383 23 2,031 336
sqftUB2 25 1,436 317 25 599 192 19 379 168 18 556 153
tunhLB 22 12,277 1,670 18 1,618 733 25 2,367 720 22 3,482 660
tunhUB 39 12,999 1,284 35 3,250 673 17 1,350 590 19 2,364 524
Total 469 63,429 492 14,838 328 9,496 329 16,083

5

125



Nathan C. Podlich, Andrei V. Lyamin and Scott W. Sloan

4 EXPLOITING PROBLEM STRUCTURE

4.1 Elimination of free variables

While most authors mention the difficulties posed by free variables in the FELA prob-
lem formulation, few provide beneficial methods of dealing with them. Makrodimopoulos
and Martin [15] describe how the free variables may be eliminated from a lower bound
formulation, but only achieve around 10% improvement in performance. This is likely
to be a result of Mosek being able to efficiently handle the free variables when not being
removed. In the following, an outline is given of the efficient elimination of some (pos-
sibly all) free variables from the problem before solving the optimization problem using
purely algebraic conditions. Note that a post-solve is also required if free variables are
eliminated in order to return a solution suitable for interpretation of the results by the
calling program and is included in performance comparisons.

The most general approach seeks to find a full rank row-set of as many free variables
as possible on which it is possible to block-pivot without causing too much fill-in and
eliminating as many free variables as possible. Because it may not be possible to find a
suitable sparsity-preserving and stable block pivot for all free variables, the partitioning
leads to

BT =

[
B̃ E
N Ā

]
(4)

where B̃ is the non-singular block to be pivoted on. The constraint matrix used in the
IPM is thus reduced to A = Ā−NB̃−1E. This can be achieved by using a truncated LU
factorization with the Markowitz criterion (row count less one multiplied by the column
count less one) to rank potential pivots [16]. Note that this approach does not consider the
actual fill-in, but instead uses an upper bound on the fill-in as a heuristic. An alternative
interpretation is that it minimizes the number of updates to the active submatrix when
the rank-one outer product update is made to the active submatrix upon eliminating
the free variable. The use of doubly linked lists for both rows and columns provides a
simple way to find the next pivot of lowest or low Markowitz-count subject to the stability
threshold at each step and also allows simple insertion and deletion operations [8]. The
process continues until a suitable pivot can no longer be found. The approach considered
here uses an approximate minimum local fill-count at each step. A limited number of
columns are searched in order of increasing column count [19] for a pivot satisfying the
stability threshold for some scalar which produces a minimum fill score upon elimination
of this pivot. The fill score is calculated as the amount of fill-in produced by using the
pivot less the number of entries that would be eliminated from the active submatrix. An
efficient procedure for finding such a pivot checks for stability of the potential pivot, and
then computes the amount of fill-in caused by the stable potential pivot.

The elimination of free variables will often lead to a “dense” column in the constraint
matrix, which will cause the Schur complement and its factor to contain many more
non-zeroes. This can be dealt with as described next.

6

126



Nathan C. Podlich, Andrei V. Lyamin and Scott W. Sloan

4.2 Handling dense columns

A column with a large number of non-zeros in the constraint matrix, relative to the
other columns, leads to a considerably more dense Schur complement system than would
be the case if the column did not contribute to the Schur complement system. For this
reason, various approaches for reducing the impact of dense columns have been developed
[3, 6]. The approach used here is based on Andersen’s [6] modified Schur complement
method but differs to allow dense columns associated with free variables to be treated
explicitly, without any perturbations or modification to a conic variable. In contrast,
Andersen’s method will require any dense columns associated with free variables to be to
be duplicated, increasing the amount of required work and memory requirements, as well
as introducing the numerical difficulties known to be caused by splitting free variables.

From the augmented equations (2), partitioning A = [ADAS] along with x and D to
match, and eliminating xS gives

[
−DD AT

D

AD ASD
−1
S AS

]{
xD

y

}
=

{
pD

q+ASD
−1
S pS

}
(5)

To determine x and y the process is as follows:

1. compute the Cholesky factorization LLT = ASD
−1
S AS;

2. solve LV = AD for V;

3. solve Lr = (q+ASD
−1pS) for r;

4. solve
(
DD +VTV

)
xD = VT r− qD for xD;

5. solve LTy = (r−VxD) for y; and

6. solve −DSxS = qS +AT
Sy for xS.

From the above it is apparent that an additional solve with the triangular factor plus
the solution with the coefficient system is required. Note also that there is no guarantee
that the factorization exists, but there is no more than a single dense column as a result
of the elimination of free variables for these problems, with no dense columns in the
original constraint matrices and no numerical difficulties were encountered in factorizing
the matrix without modification.

4.3 Eliminating fixed variables subject to a second-order cone constraint

In some problems, fixed variables subject to second-order cone constraint occur. Ob-
viously, if a fixed variable is free or linear, it may be substituted out of the problem
immediately (if they are linear and fixed to be negative, the primal problem is infeasible).
If, however, the fixed variable is part of a second-order cone constraint, then they may
not be substituted out so easily. If the first variable associated with the kth second-order
cone constraint is fixed, i.e. aijxj = bi (that is, the ith row of A only has an entry in
column j) and bi is non-zero, then the Schur complement may be reduced in size.

7

127



Nathan C. Podlich, Andrei V. Lyamin and Scott W. Sloan

Because the values of the unfixed variables associated with the kth second-order cone
are not known, the variable may not be removed from the problem. The fixed variables
constrained by a second-order cone may still be exploited, however, to reduce the compu-
tational effort required to compute the search direction [5]. For each of the fixed variables,
they may be easily eliminated from every other constraint. Then symmetrically permuting
(2) gives 


−D11 −D12 0 I
−D11 −D22 AT

12 0
0 A12 0 0
I 0 0 0








x1

x2

y1

y2





=





p1

p2

q1

q2





(6)

where A12 are the constraints with no fixed variables (possibly containing dense columns).
From the fourth block equation, it is obvious that x1 = q2. This can be substituted into
the second and third block equations, leading to a system very similar to (2) which can
then be solved for x2 and y1 (there is a well-known explicit inverse for D22 that can be
computed just as cheaply as for D [5]). Finally, y2 can be found from the first block
equation.

4.4 Effect of exploiting problem structure

The performance of the IPM with the free variable elimination, dense column handling
and fixed variable routine is shown in Table 2. It should be noted that this option uses
regularization instead of splitting free variables (see [17] for details). For comparison, the
top commercial solver Mosek is included as a benchmark.

The reduction in runtime over all of the problems is 36%. This is, in part, due to
the removal of most of the free variables in many of the problems which would otherwise
hamper the IPM’s performance and exhibited in the reduction in iteration counts on all
problems except the larger tunnel heading lower bound problem, where the problem is
solved to required tolerances for the first time. The square footing and tunnel heading
problems had all but one of the free variables removed, with the one remaining being
associated with a dense column in the constraint matrix. The other way in which the
solver has benefitted is through a smaller factorization in terms of dimension and non-zero
entries. The number of non-zero entries was reduced from 2% to 49% with an average
of 16%, and the most benefit occuring on both forms of the upper bound problems.
The reduction in dimension resulted from both the free variable elimination and from
exploiting the fixed variables. In the square footing problems, a 17% reduction in the
dimension of the lower bound problem and reductions of 44% and 50% on the upper
bound and quadratic formulation upper bound problems, respectively.

In addition, the solver now compares favourably with Mosek. The solver spends, on
average, an almost identical number of iterations as the commercial offering and is no-
ticeably quicker in runtime. The number of non-zero entries in the factorization is still
considerably better in Mosek across the set, suggesting that further improvement in the
ordering may be possible, and possibly further free variable eliminations in some of the
problems.

8

128



Nathan C. Podlich, Andrei V. Lyamin and Scott W. Sloan

5 PARALLELIZATION OF THE LINEAR SOLVER

In the breakdown of the IPM solution time, over 75% of the total time is still spent
in the factorization routine. While other areas are able to be parallelized and are likely
to yield some improvement [4], the benefit is not expected to be significant for FELA
problems. The main hurdle to be overcome for sparse linear equation solvers is ensuring
that the dense subproblems are large enough to fully exploit the available performance
of the hardware. Fortunately, many of the supernodes, especially as one moves towards
the root of the elimination tree, are large enough to expect a major improvement if a
machine’s parallel computing resources can be exploited. This approach also enables
pre-compiled and highly optimized BLAS libraries to be used on single machines. These
parallel libraries have been tuned for the hardware and provide a high fraction of peak
hardware performance.

The parallel Intel MKL 11.0.5 was used for the dense BLAS operations in the su-
pernodal Cholesky factorization. To exploit the highly parallel capability of recent GPU
hardware, a modified version of CHOLMOD (version 3.0.3) was used [11]. CHOLMOD was mod-
ified by discarding the functionality to restart the factorization when a non-positive pivot
is encountered and the same modified DPOTF2 routine used above is called in place of
the BLAS library routine. To benchmark the improvement in performance, the problem
set was solved using Mosek with multiple threads. Note that it is not known what specific
areas in Mosek have been parallelized, while the two parallel options considered are only
exploiting parallelism in the factorization of the Schur complement system and subsequent
solves, as well as any calls to the BLAS library. The results presented in this chapter sum-
marize simulations performed on an Intel Xeon E5-1620 @ 3.60 GHz with 64GB RAM
and an NVIDIA Tesla K20c GPU. The results are shown in Figure 2 and Table 3, while
Figure 3 shows the growth in factor size and total solution time with problem dimension
for the upper bound tunnel heading problem.

The two options compute the same objective values, with slight differences caused by
rounding in the solver with dynamically scheduled accumulation in the GPU solver when
computing the contribution from the child supernodes. As expected, the iteration counts
are almost identical between the two solvers and Mosek computes similar objective values
for the problems. The parallel version on a quad-core processor is approximately twice as
fast as the sequential version which is consistent with the behaviour of Mosek (the parallel
test machine yields a 10%-15% edge over the machine used for the sequential tests). The
GPU option is more than twice as fast as the parallel CPU-only version, even with the
additional time necessary to initialize and finalize the GPU functionality. Both solvers are
faster than Mosek across the set, with the GPU version achieving 4.65× speedup. As can
be seen in Figure 3(b), the GPU version’s performance is better as the problems become
larger, where the computation is able to better saturate the hardware’s capabilities.

6 CONCLUSIONS

The development of a state-of-the-art interior point method has been described, achiev-
ing significant gains over the best available solvers. The judicious choice of available linear

9

129



Nathan C. Podlich, Andrei V. Lyamin and Scott W. Sloan

Figure 2: Parallel performance.

sqexLB sqexUB sqexUB2 sqftLB sqftUB sqftUB2 tunhLB tunhUB
0

500

1,000

1,500

2,000

377
499

269

1,571

1,071

264

1,885

1,072

255
387

135

681

476

183

979

584

126
191

85
223

160
95

389

236

T
o
ta
l
so
lu
ti
o
n
ti
m
e
(s
)

Mosek (Parallel) Parallel GPU

Figure 3: Upper bound tunnel heading problem with varying problem size.

0 0.5 1 1.5 2 2.5
0

500

1,000

1,500

2,000

Factor dimension (106)

N
on

-z
er
o
es

in
fa
ct
or

(1
06
)

(a) Number of non-zeroes in factorization

0 1 2 3 4
0

200

400

600

800

1,000

1,200

Equality constraints (106)

T
ot
al

so
lu
ti
on

ti
m
e
(s
)

Mosek

Parallel
GPU

(b) Total solution time

10

130



Nathan C. Podlich, Andrei V. Lyamin and Scott W. Sloan

Table 3: Performance of parallel solvers. tP is the initialization, ordering and presolve time spent before
the IPM starts.

Mosek (Parallel) Parallel GPU
Problem nit tT tP nit tT tP nit tT tP
sqexLB 20 377 23 21 255 4 21 126 6
sqexUB 17 499 14 18 387 2 18 191 4
sqexUB2 24 269 14 16 135 2 16 85 3
sqftLB 20 1,571 51 24 681 6 24 223 7
sqftUB 23 1,071 27 21 476 4 21 160 6
sqftUB2 18 264 12 19 183 2 19 95 3
tunhLB 22 1,885 56 24 979 9 27 389 11
tunhUB 19 1,072 25 17 584 4 19 236 6
Total 332 8,011 285 327 4,305 44 332 1,914 68

equation solver methods and attention to the nature of finite element limit analysis prob-
lems with large numbers of free and fixed variables has led to an improvement in the
reliability and efficiency with which these problems can be solved. This progress enables
finite element limit analysis to remain a viable and attractive design tool as larger and
more sophisticated problems are considered.

To continue improving the applicability of the solver, extending the solver to han-
dle semidefinite cones will enable large three-dimensional Mohr-Coulomb analyses to be
conducted. Elastoplastic analysis could also benefit from the development of a solver
specifically for the problem formulation while utilizing the developments made here. Use
of greater parallelism in the linear equation solver through multiple GPUs and/or clusters
should also be considered for extremely large problems.

REFERENCES

[1] Amestoy, P.R., Davis, T.A. and Duff, I.S. An approximate minimum degree ordering
algorithm. SIAM J. Matrix Anal. Appl. (1996) 17:886–905.

[2] Andersen, E.D and Andersen, K.D. Presolving in linear programming. Math. Pro-
gram. (1995) 71:221–245.

[3] Andersen, E.D., Gondzio, J., Meszaros, C. and Xu, X. Implementation of interior
point methods for large scale linear programming in Terlaky, T. (Ed.) Interior Point
Methods of Mathematical Programming. Kluwer Academic Publishers, (1996) 189–
252.

[4] Andersen, E.D. and Andersen, K.D. The MOSEK interior point optimizer for linear
programming: an implementation of the homogeneous algorithm in Frenk, H., et al.
(Eds.) High Performance Optimization. Springer, (2000) 197–232.

11

131



Nathan C. Podlich, Andrei V. Lyamin and Scott W. Sloan

[5] Andersen, E.D., Roos, C. and Terlaky, T. On implementing a primal-dual interior
point method for conic quadratic otimization. Math. Program. (2003) 95:249–277.

[6] Andersen, K.D. A modified Schur-complement method for handling dense columns
in interior point methods for linear programming. ACM Trans. Math. Softw. (1996)
22:348–356.

[7] Drucker, D.C., Greenberg, H.J. and Prager, W. Extended limit design theorems for
continuous media. Q. Appl. Math. (1952) 9:381–389.

[8] Duff, I.S. MA28 - A set of Fortran subroutines for sparse unsymmetric linear equa-
tions. Report AERE R8730, HMSO, London.

[9] Duff, I.S. and Rutherford, C. MA57 - A new code for the solution of sparse symmetric
definite and indefinite systems. ACM Trans. Math. Softw. (2004) 30:118–144.

[10] Chen, W.F. Limit Analysis and Soil Plasticity. Elsevier, (1975).

[11] Chen, Y., Davis, T.A., Hager, W.W. and Rajamanickam, S. Algorithm 887:
CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM
Trans. Math. Softw. (2008) 35.

[12] Gondzio, J. Presolve analysis of linear programs prior to applying an interior point
method. INFORMS J. Comput. (1997) 9:1–110.

[13] Karypis, G. and Kumar, V. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. (1998) 20:359–392.

[14] Krabbenhøft, K., Lyamin, A.V. and Sloan, S.W. Formulation and solution of some
plasticity problems as conic programs. Int. J. Solids Struct. (2007) 44:1533–1549.

[15] Makrodimopoulos, A. and Martin, C.M. Lower bound limit analysis of cohesive-
frictional materials using second-order cone programming. Int. J. Numer. Anal.
Methods Eng. (2006) 66:604-634.

[16] Mészáros, C. On free variables in interior point methods. Optim. Methods Softw.
(1998) 4:121–139.

[17] Podlich, N.C. The Development of Efficient Algorithms for Large-Scale Finite Ele-
ment Limit Analysis. Ph.D. dissertation. University of Newcastle, (2018)

[18] Wright, S.J. Primal-Dual Interior Point Methods. SIAM, (1997).

[19] Zlatev, Z. On some pivotal strategies in Gaussian elimination by sparse technique.
SIAM J. Numer. Anal. (1980) 17:18–30.

12

132




