7,449 research outputs found

    Is the Compact Source at the Center of Cas A Pulsed?

    Get PDF
    A 50 ksec observation of the Supernova Remnant Cas A was taken using the Chandra X-Ray Observatory High Resolution Camera (HRC) to search for periodic signals from the compact source located near the center. Using the HRC-S in imaging mode, problems with correctly assigning times to events were overcome, allowing the period search to be extended to higher frequencies than possible with previous observations. In an extensive analysis of the HRC data, several possible candidate signals are found using various algorithms, including advanced techniques developed by Ransom to search for low significance periodic signals. Of the candidate periods, none is at a high enough confidence level to be particularly favored over the rest. When combined with other information, however (e.g., spectra, total energetics, and the historical age of the remnant), a 12 ms candidate period seems to be more physically plausible than the others, and we use it for illustrative purposes in discussing the possible properties of a putative neutron star in the remnant. We emphasize that this is not necessarily the true period, and that a follow-up observation, scheduled for the fall of 2001, is required. A 50 ksec Advanced CCD Imaging Spectrometer (ACIS) observation was taken, and analysis of these data for the central object shows that the spectrum is consistent with several forms, and that the emitted X-ray luminosity in the 0.1 -10 keV band is 10^{33}-10^{35}erg cm^{-2}sec^{-1} depending on the spectral model and the interstellar absorption along the line of sight to the source.Comment: 14 pages, 3 figures Submitted to ApJ 2001 June 2

    Persistent junk solutions in time-domain modeling of extreme mass ratio binaries

    Full text link
    In the context of metric perturbation theory for non-spinning black holes, extreme mass ratio binary (EMRB) systems are described by distributionally forced master wave equations. Numerical solution of a master wave equation as an initial boundary value problem requires initial data. However, because the correct initial data for generic-orbit systems is unknown, specification of trivial initial data is a common choice, despite being inconsistent and resulting in a solution which is initially discontinuous in time. As is well known, this choice leads to a "burst" of junk radiation which eventually propagates off the computational domain. We observe another unintended consequence of trivial initial data: development of a persistent spurious solution, here referred to as the Jost junk solution, which contaminates the physical solution for long times. This work studies the influence of both types of junk on metric perturbations, waveforms, and self-force measurements, and it demonstrates that smooth modified source terms mollify the Jost solution and reduce junk radiation. Our concluding section discusses the applicability of these observations to other numerical schemes and techniques used to solve distributionally forced master wave equations.Comment: Uses revtex4, 16 pages, 9 figures, 3 tables. Document reformatted and modified based on referee's report. Commentary added which addresses the possible presence of persistent junk solutions in other approaches for solving master wave equation

    Learning from Examples with Unspecified Attribute Values

    Get PDF
    We introduce the UAV learning model in which some of the attributes in the examples are unspecified. In our model, an example x is classified positive (resp., negative) if all possible assignments for the unspecified attributes result in a positive (resp., negative) classification. Otherwise the classificatoin given to x is ? (for unknown). Given an example x in which some attributes are unspecified, the oracle UAV-MQ responds with the classification of x. Given a hypothesis h, the oracle UAV-EQ returns an example x (that could have unspecified attributes) for which h(x) is incorrect. We show that any class learnable in the exact model using the MQ and EQ oracles is also learnable in the UAV model using the MQ and UAV-EQ oracles as long as the counterexamples provided by the UAV-EQ oracle have a logarithmic number of unspecified attributes. We also show that any class learnable in the exact model using the MQ and EQ oracles is also learnable in the UAV model using the UAV-MQ and UAV-EQ oracles as well as an oracle to evaluate a given boolean formula on an example with unspecified attributes. (For some hypothesis classes such as decision trees and unate formulas the evaluation can be done in polynomial time without an oracle.) We also study the learnability of a universal class of decision trees under the UAV model and of DNF formulas under a representation-dependent variation of the UAV model

    Agnostic Learning of Geometric Patterns

    Get PDF
    Goldberg, Goldman, and Scott demonstrated how the problem of recognizing a landmark from a one-dimensional visual image can be mapped to that of learning a one-dimensional geometric pattern and gave a PAC algorithm to learn that class. In this paper, we present an efficient on-line agnostic learning algorithm for learning the class of constant-dimension geometric patterns. Our algorithm can tolerate both classification and attribute noise. By working in higher dimensional spaces we can represent more features from the visual image in the geometric pattern. Our mapping of the data to a geometric pattern, and hence our learning algorithm, is applicable to any data representable as a constant-dimensional array of values, e.g. sonar data, temporal difference information, or amplitudes of a waveform. To our knowledge, these classes of patterns are more complex than any class of geometric patterns previously studied. Also, our results are easily adapted to learn the union of fixed-dimensional boxes from multiple-instance examples. Finally, our algorithms are tolerant of concept shift

    Strong-field tidal distortions of rotating black holes: Formalism and results for circular, equatorial orbits

    Get PDF
    Tidal coupling between members of a compact binary system can have an interesting and important influence on that binary's dynamical inspiral. Tidal coupling also distorts the binary's members, changing them (at lowest order) from spheres to ellipsoids. At least in the limit of fluid bodies and Newtonian gravity, there are simple connections between the geometry of the distorted ellipsoid and the impact of tides on the orbit's evolution. In this paper, we develop tools for investigating tidal distortions of rapidly rotating black holes using techniques that are good for strong-field, fast-motion binary orbits. We use black hole perturbation theory, so our results assume extreme mass ratios. We develop tools to compute the distortion to a black hole's curvature for any spin parameter, and for tidal fields arising from any bound orbit, in the frequency domain. We also develop tools to visualize the horizon's distortion for black hole spin a/M3/2a/M \le \sqrt{3}/2 (leaving the more complicated a/M>3/2a/M > \sqrt{3}/2 case to a future analysis). We then study how a Kerr black hole's event horizon is distorted by a small body in a circular, equatorial orbit. We find that the connection between the geometry of tidal distortion and the orbit's evolution is not as simple as in the Newtonian limit.Comment: 37 pages, 8 figures. Accepted for publication to Physical Review D. This version corrects a number of typographical errors found when reviewing the page proof

    A New Search Technique for Short Orbital Period Binary Pulsars

    Get PDF
    We describe a new and efficient technique which we call sideband or phase-modulation searching that allows one to detect short period binary pulsars in observations longer than the orbital period. The orbital motion of the pulsar during long observations effectively modulates the phase of the pulsar signal causing sidebands to appear around the pulsar spin frequency and its harmonics in the Fourier transform. For the majority of binary radio pulsars or Low-Mass X-ray Binaries (LMXBs), large numbers of sidebands are present, allowing efficient searches using Fourier transforms of short portions of the original power spectrum. Analysis of the complex amplitudes and phases of the sidebands can provide enough information to solve for the Keplerian orbital parameters. This technique is particularly applicable to radio pulsar searches in globular clusters and searches for coherent X-ray pulsations from LMXBs and is complementary to more standard ``acceleration'' searches.Comment: 22 pages. 8 figures. Submitted to Ap

    Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries

    Full text link
    Gravitational wave emission from extreme mass ratio binaries (EMRBs) should be detectable by the joint NASA-ESA LISA project, spurring interest in analytical and numerical methods for investigating EMRBs. We describe a discontinuous Galerkin (dG) method for solving the distributionally forced 1+1 wave equations which arise when modeling EMRBs via the perturbation theory of Schwarzschild blackholes. Despite the presence of jump discontinuities in the relevant polar and axial gravitational "master functions", our dG method achieves global spectral accuracy, provided that we know the instantaneous position, velocity, and acceleration of the small particle. Here these variables are known, since we assume that the particle follows a timelike geodesic of the Schwarzschild geometry. We document the results of several numerical experiments testing our method, and in our concluding section discuss the possible inclusion of gravitational self-force effects.Comment: Revised in response to referees' reports. Several minus sign errors corrected, and improved tables. Uses revtex4, 27 pages, 6 figures, 3 table
    corecore