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Tidal coupling between members of a compact binary system can have an interesting and important
influence on that binary’s dynamical inspiral. Tidal coupling also distorts the binary’s members, changing
them (at lowest order) from spheres to ellipsoids. At least in the limit of fluid bodies and Newtonian gravity,
there are simple connections between the geometry of the distorted ellipsoid and the impact of tides on the
orbit’s evolution. In this paper, we develop tools for investigating tidal distortions of rapidly rotating black
holes using techniques that are good for strong-field, fast-motion binary orbits. We use black hole
perturbation theory, so our results assume extreme mass ratios. We develop tools to compute the distortion
to a black hole’s curvature for any spin parameter, and for tidal fields arising from any bound orbit, in
the frequency domain. We also develop tools to visualize the horizon’s distortion for black hole spin
a/M < +/3/2 (leaving the more complicated a/M > 1/3/2 case to a future analysis). We then study how a
Kerr black hole’s event horizon is distorted by a small body in a circular, equatorial orbit. We find that the
connection between the geometry of tidal distortion and the orbit’s evolution is not as simple as in the

Newtonian limit.
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I. INTRODUCTION
A. Tidal coupling and binary inspiral

Tidal coupling in binary inspiral has been a topic of
much recent interest. A great deal of attention has focused
in particular on systems which contain neutron stars, where
tides and their backreaction on the binary’s evolution
may allow a new probe of the equation of state of neutron
star matter [1-3]. A great deal of work has been done to
rigorously define the distortion of fluid stars [4,5], the
coupling of the tidal distortion to the binary’s orbital energy
and angular momentum [6], and most recently the impor-
tance of nonlinear fluid modes which can be sourced by
tidal fields [7,8].

Tidal coupling also plays a role in the evolution of binary
black holes. Indeed, the influence of tidal coupling on
binary black holes has been studied in some detail over the
past two decades, but using rather different language:
Instead of “tidal coupling,” past literature typically dis-
cusses gravitational radiation “down the horizon.” This
down-horizon radiation has a dual description in the tidal
deformation of the black hole’s event horizon. A major
purpose of this paper is to explore this dual description,
examining quantitatively how a black hole is deformed by
an orbiting companion.

Consider the down-horizon radiation picture first. The
wave equation governing radiation produced in a black hole
spacetime admits two solutions [9,10], one describing
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outgoing radiation very far from the hole, and another
describing radiation ingoing on the event horizon. Both
solutions carry energy and angular momentum away from
the binary, and drive (on average) a secular inspiral of the
orbit. After suitable averaging, we require (for example) the
orbital energy E ; to evolve according to

dEy,  (dE\® (dE\"
d —  \ dt dt )’

where (dE/dt)® describes energy carried far away by the
waves, and (dE/dt)! describes energy carried into the
event horizon.

The down-horizon flux has an interesting property.
When it is computed for a small body that is in a circular,
equatorial orbit of a Kerr black hole with mass M and spin
parameter a, we find that

dE\H
<E) & (Qorb - QH)7

(1.1)

(1.2)

where Qg = M'/?/(r*/> +aM'/?) is the orbital fre-
quency,' and Qy = a/2Mr _ is the hole’s spin frequency
(Ref. [11], Sec VIID; see also synopsis in Sec. Il E). The

"Throughout this paper, we use units with G = 1 = c.
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radius r, = M + VM? — a? gives the location of the event
horizon in Boyer-Lindquist coordinates. We assume that
the orbit is prograde, so that the orbital angular momentum
is parallel to the hole’s spin angular momentum.

When Q. > Qp (i.e., when the orbit rotates faster than
the black hole spins), we have (dE/dt)! > O0—radiation
carries energy into the horizon, taking it from the orbital
energy. This is intuitively sensible, given that an event
horizon generally acts as a sink for energy and matter.
However, when Q.4 < Qy (the hole spins faster than
the orbit’s rotation), we have (dE/dt)"' < 0. This means
that the down-horizon component of the radiation aug-
ments the orbital energy—energy is transferred from the
hole to the orbit. This is far more difficult to reconcile with
the behavior of an event horizon.

One clue to understanding this behavior is that, when
Qy > Q.. the modes which contribute to the radiation are
superradiant [12,13]. Consider a plane wave which prop-
agates toward the black hole. A portion of the wave is
absorbed by the black hole (changing its mass and spin),
and a portion is scattered back out to large radius. A
superradiant mode (see, for example, Sec. 98 of Ref. [13])
is one in which the scattered wave has higher amplitude
than the original ingoing wave. Some of the black hole’s
spin angular momentum and rotational energy has been
transferred to the radiation.

B. Tidally distorted strong gravity objects

Although the condition for superradiance is the same
as the condition under which an orbit gains energy from
the black hole, superradiance does not explain how
energy is transferred from the hole to the orbit. A more
satisfying picture of this can be built by invoking the dual
picture of a tidal distortion. As originally shown by
Hartle [14,15], an event horizon’s intrinsic curvature is
distorted by a tidal perturbation. In analogy with tidal
coupling in fluid systems, the tidally distorted horizon
can gravitationally couple to the orbiting body, trans-
ferring energy and angular momentum from the black
hole to the orbit.

Let us examine the fluid analogy in more detail for a
moment. Consider in particular a moon that raises a tide on
a fluid body, distorting its shape from spherical to a prolate
ellipsoid. The tidal response will produce a bulge that tends
to point at the moon. Due to the fluid’s viscosity, the
bulging response will lag the driving tidal force. As a
consequence, if the moon’s orbit is faster than the body’s
spin, then the bulge will lag behind. The bulge will exert a
torque on the orbit that tends to slow down the orbit; the
orbit exerts a torque that tends to speed up the body’s spin.
Conversely, if the spin is faster than the orbit, the bulge will
lead the moon’s position, and the torque upon the orbit will
tend to speed it up (and torque from the orbit tends to slow
down the spin). In both cases, the bulge and moon exert
torques on one another in such a way that the spin and orbit
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frequencies tend to be equalized.2 The action of this torque
is such that energy is taken out of the moon’s orbit if the
orbit frequency is larger than the spin frequency, and
vice versa.

Since a black hole’s shape is changed by tidal forces in a
manner similar to the change in shape of a fluid body, one
can imagine that the horizon’s tidal bulge likewise exerts a
torque on an orbit. Examining Eq. (1.2), we see that the
sign of the “horizon flux” energy loss is exactly in accord
with the tidal fluid analogy—energy is lost from the orbit if
the orbital frequency exceeds the black hole’s spin fre-
quency, and vice versa. Using the membrane paradigm
[11], one can assign a viscosity to the horizon, making the
fluid analogy even more compelling.

However, as was first noted by Hartle [14], the geometry
of a black hole’s tidal bulge behaves in a rather counter-
intuitive manner. At least using a weak-field, slow-spin
analysis, the bulge leads the orbit when Qg > Qy, and
lags when Qg < Qy. This is opposite to the geometry
which the fluid analogy would lead us to expect. This is
because an event horizon is a teleological object: Whether
an event in spacetime is inside or outside a horizon depends
on that event’s null future. At some moment in a given time
slicing, an event horizon arranges itself in anticipation of
the gravitational stresses it will be feeling in the future. This
is closely related to the manner in which the event horizon
of a spherical black hole expands outward when a spherical
shell falls into it. See Ref. [11], Sec. VIC 6 for further
discussion.

Much of this background has been extensively discussed
in past literature [5,11,14,15,17-20]. Recent work on this
problem has examined in detail how one can quantify the
tidal distortion of a black hole, demonstrating that the
“gravitational Love numbers” which characterize the dis-
tortion of fluid bodies vanish for nonrotating black holes
[5], but that the geometry’s distortion can nonetheless be
quantified assuming particularly useful coordinate systems
[17,19] and in a fully covariant manner [20]. Indeed, one
can define “surficial Love numbers,” which quantify the
distortion of a body’s surface, for Schwarzschild black
holes [21]. These techniques have been used to study
horizon distortion in the Schwarzschild and slow-spin
limits, and for slow orbital velocities [17,20,22].

C. Our analysis: Strong-field, rapid
spin tidal distortions

The primary goal of this paper is to develop tools to
explore the distorted geometry of a black hole in a binary

*This is why our Moon keeps the same face to the Earth: Tidal
coupling has spun down the Moon’s “day” to match its “year.”
Tidal forces from the Moon likewise slow down the Earth’s spin,
lengthening the day at a rate of a few milliseconds per century
[16]. Given enough time, this effect would drive the Earth to keep
the same face to the Moon.
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which are good for fast-motion, strong field orbits. We use
techniques originally developed by Hartle [15] to compute
the Ricci scalar curvature Ry associated with the 2-surface
of the distorted horizon; this is closely related to the
intrinsic horizon metric developed in Ref. [20]. We will
restrict our binaries to large mass ratios in order to use the
tools of black hole perturbation theory. We also develop
tools to embed the horizon in a 3-dimensional space in
order to visualize the tidal distortions. In this paper, we
restrict our embeddings to black hole spins a/M < v/3/2.
This is the largest spin at which the horizon can be
embedded in a global Euclidean space; black holes with
spins in the range v/3/2 < a/M <1 must either be
embedded in a space that is partially Euclidean, partially
Lorentzian [23], or be embedded in another space alto-
gether [24,25]. Although no issue of principle prevents us
from examining larger spins, it does not add very much to
the physics we wish to study here, so we defer embeddings
for a/M > \/3/2 to a later paper.

A secondary goal of this paper is to investigate whether
there is a simple connection between the geometry of the
tidal bulge and the orbit’s evolution. In particular, we wish
to see if the sign of dEM/dt, which is determined by
Q. — Qp, is connected to the bulge’s geometry relative to
the orbit. This turns out to be somewhat tricky to inves-
tigate. The orbit and the horizon are at different locations,
so we must map the orbit’s position onto the horizon. There
is no unique way to do this,’ so the results depend at least
in part on how we make the map. We present two maps
from orbit to horizon. One, based on ingoing zero-angular
momentum light rays, is useful for comparing with past
literature. The other, based on the geometry of the horizon’s
embedding and the orbit at an instant of constant ingoing
time, is useful for describing our numerical data (at least for
small spin). Another way to characterize the bulge geom-
etry is to examine the relative phase of the bulge’s curvature
to the tidal field which distorts the black hole. Both of
these quantities are defined at » = r,, so no mapping is
necessary.

We find that, at the extremes, the response of a black hole
to a perturbing tide follows Newtonian logic (modulo a
swap of “lag” and “lead,” thanks to the horizon’s teleo-
logical nature). In particular, when Q.4 > Qy (so that
dEM/dt > 0), the bulge leads the orbit, no matter how we
compare the bulge to the orbit. When Q5 <« Qy
(dEM/dt < 0), the bulge lags the orbit. However, relations
between lag, lead, and dE™/dt are not so clear cut when
Q. ~ Q. Consider, in particular the case Q. = Qp, for
which dEM /dt = 0. For Newtonian, fluid bodies, the tidal
bulge points directly at the orbiting body in this case, with
no exchange of torque between the body and the orbit. For

*Indeed, the behavior of the map depends on the gauge used
for the calculation, and the time slicing that is used, neither of
which we investigate in this paper.
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black holes, we find no particular relation between the
horizon’s bulge and the orbit’s position. The relation
between tidal coupling and tidal distortion is far more
complicated in black hole systems than it is for fluid bodies
in Newtonian gravity—which is not especially surprising.
Soon after we submitted this paper and posted a preprint
to the arXiv, Cabero and Krishnan posted an analysis of
tidally deformed spinning black holes [26]. Although their
techniques and analysis differ quite a bit from ours
(focusing on the Bowen-York [27] initial data set, and
using the framework of isolated horizons), their results
seem broadly consistent with ours. It may be useful in
future work to explore this apparent consistency more
closely, and to borrow some of the tools that they have
developed for the systems that we analyze here.

D. Outline of this paper, units, and conventions

The remainder of this paper is organized as follows. Our
formalism for computing the geometry of distorted Kerr
black holes is given in Sec. II. We show how to compute the
curvature of a tidally distorted black hole, and how to
quantify the relation of the geometry of this distortion to the
geometry of the orbit which produces the tidal field. We
also discuss how to compute dE™/dt, demonstrating that
the information which determines this down-horizon flux is
identical to the information which determines the geometry
of the distorted event horizon.

Sections Il and IV present results for Schwarzschild and
Kerr, respectively. In both sections, we first look at the
black hole’s curvature in a slow motion, slow-spin expan-
sion (slow motion only for Schwarzschild). This allows us
to develop analytic expressions for the curvature, which are
useful for comparing to the fast-motion, rapid spin numeri-
cal results that we then compute. We visualize tidally
distorted black holes by embedding their horizons in a
3-dimensional space. This provides a useful way to see how
tides change the shape of a black hole. In Sec. V, we
examine in some detail whether there is a simple con-
nection between a black hole’s tidally distorted geometry
and the coupling between the hole and the orbit. In short,
the answer we find is “no”—Newtonian, fluid intuition
breaks down for black holes and strong-field orbits.

Concluding discussion is given in Sec. VI, followed by
certain lengthy technical details which we relegate to
appendices. Appendix A describes in detail how to compute
d, a Newman-Penrose operator which lowers the spin-
weight of quantities needed for our analysis. Appendix B
describes how to embed a distorted black hole’s event
horizon in a 3-dimensional Euclidean space. As mentioned
above, one cannot embed black holes with a/M > 1/3/2in
Euclidean space, but must use a either a mixed Euclidean/
Lorentzian space [23], or something altogether different
[24,25]. We will examine the range a/M > v/3/2 in a later
paper. Appendix C computes, to leading order in spin, the
spheroidal harmonics which are used as basis functions in
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black hole perturbation theory. This is needed for the slow-
spin expansions we present in Sec. I'V. Finally, Appendix D
summarizes certain changes in notation that we have
introduced versus previous papers that use black hole
perturbation theory. These changes synchronize our notation
with that used in the literature from which we have recently
adopted our core numerical method [28,29].

All of our calculations are done in the background of a
Kerr black hole. Two coordinate systems, described in
detail in Ref. [30], are particularly useful for us. The Boyer-
Lindquist coordinates (¢, r, 8, ¢) yield the line element

M AMarsin?0 s
ds? = — (1 - r) i - a;m didg + 5 dr?

T
S e “2)22_ CASIO i, (13)

where
A =7r?-2Mr+ a?, T =712 +a’cos’0. (1.4)

The function A has two roots, r, = M +VM? —a?; r. is
the location of the event horizon. We will also often find it
useful to use ingoing coordinates (v, ', 8, y), related to the
Boyer-Lindquist coordinates by [30]

2 2
v = ar+ 9 (1.5)
A
a
dl//:d(/ﬁ—i—Zdr. (1.6)
dr' = dr. (1.7)

These coordinates are well behaved on the event horizon,
and so are useful tools for describing fields that fall into the
hole. Although the relation between r and 7’ is trivial, it can
be useful to distinguish the two as a bookkeeping device
when transforming between the two coordinate systems.
When there is no ambiguity, we will drop the prime on the
ingoing radial coordinate. The Kerr metric in ingoing
coordinates is given by

2M7
ds?=— <1 - Zr ) dv? +2dvdr —2asin>0dr’ dy

4Mar’sin’0

~ arzsm dvdy

[(¥)? +a?)*> — a®Asin?6
z

+Xd6? + sinfdy?.  (1.8)
The quantities X and A here are exactly as in Eq. (1.4), but
with r — 7.

It is not difficult to integrate up Eqgs. (1.5) and (1.6) to
find
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v=1t+r", W =q¢+T, (1.9)
where [30]
Mr, ( >
P e In [ — 1
VM? - a? ry
M 1n<i—1), (1.10)
M?* — g2 r_
T ln(r_r+> (1.11)
WME—a \r-r-
Notice that = ¢ when a = 0.
Forr=r, 4 or, or < M,
F—Qur* = K(a)+ O(6r). (1.12)
where
a
Kla)=— " 1i>-M
(@) 2M(Mr+—a2){a T
+ 2M2arctanh<\/ 1 - az/Mz)
2_ 2 a’
MN M —aIn|———
i ‘ “[4<M2—a2>”
a a a3
—— 2 i hi—2m( ) (L) + o).
2M+{ n(zMﬂ(zM) +0@)
(1.13)

This means that, near the horizon, the combination 7 —
Q r* cancels out the logarithms in both r* and 7, trending
to a constant K (a) that depends only on spin. The quantity
K(a) plays an important role in setting the phase of tidal
fields on the event horizon.

II. FORMALISM

In this section, we develop the formalism we use to study
the geometry of deformed event horizons. The details of
this calculation are presented in Sec. Il A. Two pieces of
this calculation are sufficiently involved that we present
them separately. First, in Sec. II B, we give an overview of
how one solves the radial perturbation equation to find the
amplitude that sets the magnitude of the tidal distortion.
This material has been discussed at great length in many
other papers, so we present just enough detail to illustrate
what is needed for our analysis. We include in our
discussion the static limit, mode frequency @ = 0. Since
static modes do not carry energy or angular momentum,
they have been neglected in almost all previous analyses.
However, these modes affect the shape of a black hole, so
they must be included here. Second, in Sec. II C we provide
detailed discussion of the angular operator d d and its action
upon the spin-weighted spheroidal harmonic.
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Section II D describes how we characterize the bulge in
the event horizon which is raised by the orbiting body’s
tide. The bulge is a simple consequence of the geometry,
but this discussion deserves separate treatment in order to
properly discuss certain choices and conventions we must
make. We conclude this section by briefly reviewing down-
horizon fluxes in Sec. ITE. Although this discussion is
tangential to our main focus in this paper, we do this to
explicitly show that the deformed geometry and the down-
horizon flux are just different ways of presenting the same
information about the orbiting body’s perturbation to the
black hole.

A. The geometry of an event horizon

We will characterize the geometry of distorted black
holes using the Ricci scalar curvature Ry associated with
their event horizon’s 2-surface. The scalar curvature of an
undistorted Kerr black hole is given by4 [23]

(1+a*/r3)(1 —3a*cos*0/r2)
(1 + a*cos?d/r%)3

2
=_ 2.1
r2+ ( )

For a =0, R(}? ) = 2/r%, the standard result for a sphere of

radius 7. For a/M > /3/2, Rg)) changes sign near the
poles. This introduces important and interesting complica-
tions to how we represent the tidal distortions of a rapidly
rotating black hole’s horizon.

To first order in the mass ratio, tidal distortions leave the
horizon at the coordinate r = r, but change the scalar
curvature on that surface (at least in all “horizon-locking
gauges” [20], which we implicitly use in our analysis).
Using the Newman-Penrose formalism [31], Hartle [15]
shows that the perturbation RS) to the curvature is simply
related to the perturbing tidal field y:

6 5 l//g-,ll-[mkn
Imkn Dmikn (ipmkn + 26)

= ZRS.)lnlkn ’

Imkn

RY) = —4Im

(2.2)

with all quantities evaluated at r = r,. The quantity w5 .,
is a term in a multipolar and harmonic expansion of the
Newman-Penrose curvature scalar y,, computed using the
Hawking-Hartle tetrad [32]:

M = =gy 1) o) 80 8 o 1

_ E HH
- l//O,Imkn .

Imkn

(2.3)

*Reference [23] actually computes the horizon’s Gaussian
curvature Ry. The Gaussian curvature R of any 2-surface is
exactly half that surface’s scalar curvature R, so Ry = 2Ry.
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The tensor C,p,5 is the Weyl curvature, and the vectors
(1*)HH and (m®)HH are Newman-Penrose tetrad legs in the
Hawking-Hartle representation. See Appendix A for
detailed discussion of this tetrad and related quantities.
We assume that y arises from an object in a bound orbit
of the Kerr black hole. This object’s motion can be
described using the three fundamental frequencies associ-
ated with such orbits: an axial frequency €, a polar
frequency Qy, and a radial frequency €,. The indices m, k,
and n label harmonics of these frequencies:
Opien = My + kQy + nQ,. (2.4)
The index [ labels a spheroidal harmonic mode, and is
discussed in more detail below. The remaining quantities
appearing in Eq. (2.2) are the wave number for ingoing
radiation

Pmkn = Omkn — mQHv (25)
and
R /M2 _ 2
e=t" T K (2.6)
4Mr 2

The quantity « is the Kerr surface gravity. We will find this
interpretation of e to be useful when discussing the
geometry of the horizon’s tidal distortion. We discuss
the operator 89 in detail in Sec. I C. For now, note that
it involves derivatives with respect to 6.

The calculation of RS Jinvolves several computations that
use the Newman-Penrose derivative operator D = [%0,,.
Using the Hawking-Hartle form of [* and ingoing Kerr
coordinates (see Appendix A), we find that

o 5y (2.7)

as r — r. The fields to which we apply this operator have
the form e!(™=@mx?) near the horizon, so
DF = l(mQH - wmkn)jr = _ipmknj: (28)
for all relevant fields F. Hartle chooses a time coordinate
t such that D = 0/0t near the horizon, effectively working
in a frame that corotates with the black hole. As a
consequence, his Eq. (2.21) [equivalent to our Eq. (2.2)]
has @ in place of p. Hartle’s (2.21) also corresponds to a
single Fourier mode, and so is not summed over indices.
The Hawking-Hartle tetrad is used in Eq. (2.3) because it
is well behaved on the black hole’s event horizon [32]. In
many discussions of black hole perturbation theory based

>This wave number is often written k in the literature; we use p
to avoid confusion with harmonics of the 8 frequency.
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on the Teukolsky equation, we instead use the Kinnersley
tetrad, which is well designed to describe distant radiation
[9,33]. The Kinnersley tetrad is described explicitly in
Appendix A. The relation between v, in these two tetrads
is [cf. Ref. [10], Eq. (4.43)]

vy = 272)24/5- (2.9)

Further, we know that y/g on the horizon can be written [10]

H .
K _ Wlmkn+2S[m (9’ awmkn) i
Vo imkn = AZ ¢

*
m(/)_wmkn[_pmknr )

(2.10)

We have introduced Wl},lnkn, a complex amplitude6 which
we will discuss in more detail below, as well as the
spheroidal harmonic of spin-weight 42, ,,S, (0;aw,u,)-
Spheroidal harmonics are often used in black hole pertur-
bation theory, since the equations governing a field of
spin-weight s in a black hole spacetime separate when
these harmonics are used as a basis for the 8 dependence.
In the limit aw,,;,, — 0, they reduce to the spin-weighted
spherical harmonics:
sSlm(e; awmkn) - sYlm<9) as aWpgy —> 0. (211)
sY 1 (0) denotes the spherical harmonic without the axial
dependence: ;Y ,,(0, ¢) = ;Y ,,,(8)e™?. In what follows, we
will abbreviate:
28, (05 a0,1,) = S}, (0).

Imkn

(2.12)

We will likewise write the spin-weight —2 spheroidal
harmonic as S, (0).
Combining Egs. (2.9) and (2.10), we find

oGt (g)
Imkn® Imk i(MP—w,pjent— r
Pila = ST e 1

Using Egs. (1.9) and (2.5), we can rewrite the phase factor
using coordinates that are well behaved on the horizon:

m¢ — Wyt — pmknr* = m(l// - ?) - a)mkn(v - r*)
- (wmkn - mQH)r*
=My — @y, — m(F — Qur*).

(2.14)

Taking the limit »r — r, and using Eq. (1.12), we find

This amplitude is written Y rather than W in Ref. [10]; we
have changed notation to avoid confusion with the spherical
harmonic.
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W&kﬂ‘s?;nkn(g) i v
Yo imtn = TleMR ¢! Pmin (V) (2.15)
where
D, (v, W) = my — w1, v — mK(a), (2.16)
with K(a) defined in Eq. (1.13). We finally find
WH iq)mku(”"l/)é 6 S+ 9
RS,)lmkn — —Im Imkn® lmkn( ) ) (217)

4M2r%rpmkn(ipmkn + 26)

We will use a Teukolsky equation solver [34-36] which
computes the curvature scalar y, rather than y. Although
w4 18 usually used to study radiation far from the black hole,
one can construct y, from it using the Starobinsky-
Churilov identities [10,37]. In the limit r — r_,

A2 B o
7 Zz}jnknsl;nkn(e)el(mqb @ pgnl=PmknT )'

Ve = (r—iacos@)* &

(2.18)

We briefly summarize how we compute Z! , in Sec. II B.

Using the Starobinsky-Churilov identities, we find that
ZzH and Wi are related by

W}_;Inkn = ﬁlmknzgnkn’ (219)
where
64(2Mr+)4pmkn (ankn + 462)(pmkn + 416)
Bimin = ’
Clmkn
(2.20)
and where the complex number c;,,;, is given by
|Clmkn|2 = {[(/1 + 2)2 + 4mawmkn - 46120)3,,]("}
X (A% 4 36maw,,, — 36a*w?,,)
+ (24 + 3)(96a*@?,,, — 48maw ;) }
+ 14402, ,(M? — a?), (2.21)
Imclmkn = 12Ma)mkn, (222)
Reclmkn = +\/|clmkn|2 - 144M2w%nkn’ (223)
The real number A appearing here is
A= Elpin — 2aM@ 1, + @0, — 2, (2.24)

with &4, the eigenvalue of S; , (6). In the limit

Imkn
awpn = 0, Epugn = (L +1). For our later weak-field
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expansion, it will be useful to have 4 as an expansion in
aw - See Appendix C for discussion of this.

Using these results, we can write the tidal distortion of
the horizon’s curvature as

ﬂlmknzgnkneiq)mk"(U’W>66 S;:nkn (6)
4M2ripmkn (ipmkn + 26)

1
R§~I >lmkn —Im

=Im[C}nZ , et )33 S ) (0)], (2.25)
where
Clmkn = 256M2r%rcl_rr£kn (pmkn + 4l€) (ipmkn - 26) . (226)

Equation (2.25) is the workhorse of our analysis. We use a
slightly modified version of the code described in
Refs. [34-36] to compute the complex numbers Z!
and the angular function 555;1,(”. We briefly describe
these calculations in the next two subsections.

B. Computing Z!!

Imkn

Techniques for computing the amplitude Z!! , have been
discussed in great detail in other papers, so our discussion
here will be very brief; our analysis follows that given in
Ref. [35]. The major change versus previous works is that
we need the solution for static modes (o = 0). Our goal
here is to present enough detail to see how earlier studies
can be modified fairly simply to include these modes. It is
worth noting that we have changed notation from that
used in previous papers by our group in order to more
closely follow the notation of Fujita and Tagoshi [28,29].
Appendix D summarizes these changes.

The complex number Z!!  is the amplitude of solutions
to the Teukolsky equation for spin-weight s = —2, so we
begin there:

2 i <demcu

dr \dr >_V””(r)lew:71mw(r)~ (2.27)

This is the frequency-domain version of this equation,
following the introduction of a modal and harmonic
decomposition which separates the original time-domain
equation; see [9] for further details. The potential V,, is
discussed in Sec. III A of Ref. [35]; the source term 7 ,,,,, is
discussed in Sec. III B of that paper.

Equation (2.27) has two homogeneous solutions relevant
to our analysis: The “in” solution is purely ingoing on the
horizon, but is a mixture of ingoing and outgoing at future
null infinity; the “up” solution is purely outgoing at future
null infinity, but is a mixture of ingoing and outgoing on the
horizon. We discuss these solutions in more detail below.
For now, it is enough that these solutions allow us to build a
Green’s function [38],

PHYSICAL REVIEW D 90, 124039 (2014)

G(r|r) = iRup (r)R™ (7)), r<r,

w Imw Imw
1
= R RD). P (228)
where
1 i del]l’Ip‘L ) delIr;1 0
Lt o ICED

is the equation’s Wronskian. This is then integrated against
the source to build the general inhomogeneous solution:

Ripo (1) = / ® G YT ()

- lerrlna)( )R][J}Ea)( ) + Zlmm( )Rllrrlnw( ) (230)
We have defined
U (R ()T 1o (1)
Zin o Ima me d /’ 231
lmw( ) W A( ) r ( )
w RP ( T
Zm(n) =y [Fmel e a2

A key property of 7, is that it is the sum of three
terms, one proportional to 8[r — ryy, ()], one proportional to
&[r—row(r)], and one proportional to &"[r— roy(7)]
(where ' denotes d/dr). Putting this into Egs. (2.31) and
(2.32), we find that

dR*mw
Z;mw(r) W{I(l)mw[ ;mw( )] +Ilmw|: dlr :|
dzR?mm
+I%’mw[ 4 } } (2.33)

(where x can stand for “up” or “in”). The factors 7 ?mlwz
operators which act on R}~ and its derivatives. These
operators integrate over the r and € motion of the orbit-
ing body.

In this analysis, we are concerned with the solution of the
perturbation equation on the event horizon, so we want

Rime as r — ro. In this limit, ZI" = 0. We define
Zimor = Zimo (74)- (2.34)

For a source term corresponding to a small body in a bound
Kerr orbit, we find that Eq. (2.33) has the form

VA Zz}}”knaw Open)- (2.35)

It is then not difficult to read off Z}fn,m See Ref. [35] for
detailed discussion of how to evaluate Eq. (2.33) and read

off these amplitudes.
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Key to computing fon w18 computing the homogeneous
solutions R,> (r), R (r), and their derivatives. Our
methods for doing this depend on whether w,,;, is zero

or not.

1. D kn # 0

The homogeneous solutions for w,,, # 0 have been
amply discussed in the literature; our analysis is based on
that of Ref. [35]. In brief, the two homogeneous solutions
of Eq. (2.27) have the following asymptotic behavior:

R (r—r,) = BFEmsSAZe=irr (2.36)
) ) inc )
R (r = o0) = Bt pleior 4 —m g=ior', (2 37)
Ry (r = 00) = Cibrete”. (2.39)
These asymptotic solutions yield the Wronskian:
W = 2iwBi Cirans, (2.40)

An effective algorithm for computing all of the quantities
which we need is described by Fujita and Tagoshi
[28,29,39]. It is based on expanding the solution in a basis
of hypergeometric and Coulomb wave functions, with the
coefficients of the expansion determined by solving a
recurrence relation; see Secs. 4.2-4.4 of Ref. [39] for
detailed discussion. We use a code based on these methods
[36] for all of our w,,,;,, # O calculations; the analytic limits
we present in Secs. III A and IV A are also based on these
methods.

2. Wpkn — 0

Static modes have been neglected in much past work.
They do not carry any energy or angular momentum, and so
are not important for many applications. These modes do
play a role in setting the shape of the distorted event
horizon, however, and must be included here.

It turns out that homogeneous solutions for @,,;, = 0 are
available as surprisingly simple closed form expressions.
Teukolsky’s Ph.D. thesis [40] presents two solutions that
satisfy appropriate boundary conditions. Defining

r—r iam
+

Y= )
ry—r_

X =

(2.41)

b
ry—r_

the two solutions of the radial Teukolsky equation for
s = —2 are

PHYSICAL REVIEW D 90, 124039 (2014)

R (r) = (ry —ro)*x%(1 + x)? <1 j—x>7

X F (2—=1,1+3;3+4+2y,—x), (2.42)
R0 (1) = (ry = r)00x1-0(1 4 1/
X F (I+3,14+1-2y;2142,-1/x). (2.43)

In these equations, ,F,(a, b;c,x) is the hypergeometric
function. These solutions satisfy regularity conditions
at infinity and on the horizon: R (r > r,) « A%, and
R}P(r = o0)  1/r=! [40]. We have introduced powers of
r, —r_ to insure that we have the correct asymptotic
behavior in r, rather than in the dimensionless variable x.
The Wronskian corresponding to these solutions is

204+ 1)! T(3+2)

W= i i+ )

(ry — )0,

(2.44)

Using Eqgs. (2.42), (2.43), and (2.44), it is simple to adapt
existing codes to compute Z!!, for @, = 0.

The results we present in Secs. III and IV will focus on
circular, equatorial orbits, for which k = n = 0. The zero-
frequency modes in this limit have m = 0, for which y = 0.

The Wronskian simplifies further:

220+ 1)!

Wono) = =5 2)1

(ry —r_) D, (2.45)

For generic orbit geometries, there will exist cases that have
@ pin = 0 with m # 0, akin to the “resonant” orbits studied
at length in Refs. [41,42]. We defer discussion of this
possibility to a later analysis which will go beyond circular
and equatorial orbits.

C. The operator 9 J

The operator , when acting on a quantity # of spin-
weight s, takes the following form:

(2.46)

dn is then a quantity of spin-weight s — 1. The quantities
and f are both Newman-Penrose spin coefficients, and § is
a Newman-Penrose derivative operator. These quantities
are all related to the tetrad legs m, m:

5= m"d

I’y

(2.47)

- 1_ _
a-p= zm”(ml‘vl,mﬂ - mtV,im,). (2.48)
We do this calculation using the Hawking-Hartle tetrad;
details are given in Appendix A. The result for general
black hole spin a is
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- 1
o =

V2 (ry —

X (LS_ —amQy sin 6 —

iacosf)

isasin @

>;1. (2.49)

ry —iacos@

The operator’ L lowers the spin-weight of the spherical
harmonics by 1:

LY, = (0g+ scot@ + mcsch), Yy,
= V(49 =s+1),,7,,

(2.50)

In a few places, we will need to evaluate LS [cos8y] and
L? [sin Oy]. This requires that we rewrite cos @ and sin € in a
form that properly indicates their spin-weight. We treat
cos € as spin-weight zero, writing

/4
cosf = ?”OY,O.

Likewise, we treat sin @ as spin-weight —1, writing

/8
sin@ = — ?ﬂ_lYlO.

This accounts for the fact that sin @ always appears in our
calculation inside operators that lower spin-weight.
With this, we find the following identities:

A
L [cosOn] = \/ ?Ls—[oylo’ﬂ
4r s s
= ?(OYmLJ? +nLiY )

4r )
=/ ?(OYmLA—’? + ’7\/5—1Y10)

=cosOL:y

(2.51)

(2.52)

— sin O, (2.53)

8
LZ[sin 0] = \/—LS[ Yio11]
\/ ( 1Yiolin+nLi_Y,,)
:_\/ 3 1YioLin

= sin LS 7. (2.54)

We used the fact that L2 applied to _; Y, yields zero.

"This _operator is denoted 60 in Ref. [15]. We will use the
symbol 3, to instead denote the Schwarzschild limit of 3.

PHYSICAL REVIEW D 90, 124039 (2014)

Using these results, it follows that

Ls (1 B iacose) _S'Y _ <1 B iacos@) =S
r, r,

iassinf
LS —— . 2.55
X< r+—iacosé’>l1 (2:35)
We can next rewrite Eq. (2.49) as
- 1 iacos @\ 5!
on = 1-
1 \/§r+ ( Iy )
. O\ -5
x (LS — amSy sin 0) (1 _ aeos ) N (2.56)
Iy
When a = 0, this reduces to
M =———Ln=0,. 2.57
=5 o =% (2.57)

When 7 is of spin-weight 2, Eq. (2.56) tells us that

s < 1 j 0\ 2
007 = (L — amQy sin9)2<1 | lacos > n.

2r+ ry
(2.58)
For a < M, Eq. (2.58) reduces to
== 1 iacos®
00n=—-L5L(1 2.
e (R PR

which reproduces Eq. (4.19) of Ref. [15].

We will apply 89 to the spheroidal harmonic S}, (6).
Following Ref. [34], we compute this function by expand-
ing it using a basis of spherical harmonics, writing

S;n(9> = Z bf}(awmkn)-ﬂqu(g)? (260)

4= min
where  gpin = ). Efficient algorithms exist
to compute the expansion coefficients b} (aw,,)

(cf. Appendix A of Ref. [34]). Expanding Eq. (2.58) puts

it into a form very useful for our purposes:
s < 1
00n=———""—=[LILE + ALS + Ay, (2.61
n 2(r+_iacose)2{ + 1 + 2]’1 ( )

where

A} = —2asin6 [mQH + (2.62)

2i
r, —iacos 0]’
4imQy 6
ry—iacosf (r, — ]

Ay = a*sin0|m>Q;
2= S iacos 0)?

(2.63)

Combining Egs. (2.60) and (2.61), and making use of
Eq. (2.50), we finally obtain
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] ()
2 z bi](awmkn)

2(ry —iacos0)* £~
x [V(g+2)(g+ Dglg—1),Y,,

+A1 V (q+ 2)(q - 1)qum + A22qu]'

39S =

(2.64)

This equation is simple to evaluate using the techniques
presented in Appendix A of Ref. [34].

D. The phase of the tidal bulge

As we will see when we examine the geometry of
distorted event horizons in detail in Secs. III and IV, a major
effect of tides on a black hole is to cause the horizon to
bulge. As has been described in detail in past literature
(e.g., [11]), the result is not so different from the response
of a fluid body to a tidal driving force, albeit with some
counterintuitive aspects thanks to the teleological nature of
the event horizon.

In this section, we describe three ways to characterize the
tidal bulge of the distorted event horizon. Two of these
methods are based on comparing the position at which the
horizon is most distorted to the position of the orbit.
Because the orbit and the horizon are at different locations,
comparing their positions requires us to map from one to
the other. The notion of bulge phase that follows then
depends on the choice of map we use. As such, any notion
of bulge phase built from comparing orbit position to
horizon geometry must be somewhat arbitrary, and can
only be understood in the context of the mapping that has
been used.

We use two maps from orbit to horizon. The first is a
“null map.” Following Hartle [15], we connect the orbit to
the horizon using an inward-going, zero-angular-momen-
tum null geodesic. This choice is commonly used in the
literature, and so is useful for comparing our results with
past work. The second is an “instantaneous map.” We
compare the horizon geometry to the orbit position on a
slice of constant ingoing time coordinate ». This is
particularly convenient for showing figures of the distorted
horizon.

The third method of computing bulge phase directly
compares the horizon’s response to the applied tidal field.
Since both quantities are defined on the horizon, no
mapping is necessary, and no arbitrary choices are needed.
We do not use this notion of bulge phase very much in this
analysis, but anticipate using it in future work which will
examine more complicated cases than the circular, equa-
torial orbits that are our focus here.

1. Relative position of orbit and bulge I: Null map

In his original examination of black hole tidal distor-
tion, Hartle [15] connects the orbit to the horizon with a

PHYSICAL REVIEW D 90, 124039 (2014)
zero-angular-momentum ingoing light ray. Choosing our

origins appropriately, the orbiting body is at angle

¢0 = Qorbt (265)

in Boyer-Lindquist coordinates. We convert to ingoing
coordinates using Eq. (1.9):

Yo = Qorb(v - 73) +7,

= Qorbv + AW(rO)’ (266)

where 7, = 7(r,) and r} = r*(r,) are given by Egs. (1.11)
and (1.10), and where

Ay (r,)

To— Qorbrg (267)
is, for each orbital radius r,, a fixed angular offset
associated with the transformation from Boyer-Lindquist
to ingoing coordinates.
The orbit’s location mapped onto the horizon is then
woM = Qv + Ay (ry) + Sy™, (2.68)
where Sy™! is the axial shift accumulated by the ingoing
null ray as it propagates from the orbit to the horizon. This
shift must in general be computed numerically, but to
leading order in a (which will be sufficient for our
purposes) it is given by

null _ _

oM
Sy i+i:2MszH< —1>. (2.69)

2M  r, o

The second form uses Q = a/4M? for small a to rewrite
this formula, which will be useful when we compare our
results to previous literature for small spin. (One should
also correct the ingoing time, v — v + dv, to account for
the time it takes for the ingoing null ray to propagate from
the orbit to the horizon. However, at leading order v « a2,
so we can neglect it for the applications we will use in this
paper. The time shift is also neglected in all previous papers
we are aware of which examine the angular offset of the
tidal bulge [15,22], since they only consider a =0
ora/M < 1.)

Let y/*!2° be the angle at which R} is maximized. This
value varies from mode to mode, but is easy to read off once

Rg i computed. The offset of the orbit and bulge using the
null map is then

OB-NM _ ,, bulge NM
=y " —y,

= l//bulge - Qorby - Al//(ro) - 5wnull‘

oy
(2.70)

A positive value for sy OB "M

the orbit.

means that the bulge leads
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2. Relative position of orbit and bulge 11:
Instantaneous map

Consider next a mapping that is instantaneous in ingoing
time coordinate v. This choice is useful for making figures
that show both bulge and orbit, since we simply show their
locations at a given moment ». This mapping neglects the
term Sy™!', but is otherwise identical to the null map:

wo = wo = Qu+ Ay(r,). (2.71)

The offset of the orbit and bulge in this mapping is

OB-IM _ ,, bulge M
=y -y,

=y — Qo — Ay(ry).

oy
(2.72)

Since sy™!! = 0 for @ = 0, the null and instantaneous maps
are identical for Schwarzschild black holes.

Before concluding our discussion of the tidal bulge
phase, we emphasize again that the phase in both the null
map and the instantaneous map follow from arbitrary
choices, and must be interpreted in the context of those
choices. Other choices could be made. For example, one
could make a map that is instantaneous in a different time
coordinate, or that is based on a different family of ingoing
light rays (e.g., the principle ingoing null congruence,
along which v, y, and 0 are constant; such a map would be
identical to the instantaneous map). These two maps are
good enough for our purposes—the null map allows us to
compare with other papers in the literature, and the
instantaneous map is excellent for characterizing the plots
we will show in Secs. III and IV.

3. Relative phase of tidal field and response
Our third method of characterizing the tidal bulge is to

use the relative phase of the horizon distortion Rg> and
distorting tidal field y. For our frequency-domain study,
this phase is best understood on a mode-by-mode basis.
Begin by reexamining Eq. (2.2):

55,
R;—Il,>lmkn = _4Im|: .WO,lmkn ) :|
pmkn(lpmkn + 6)
= Im[RS, . 2.73)
Let us define the phase Sy B, by
R?mkn _ |R?mkn| e—i&y/;';fk"' (274)

ll/](il,?mkn |Wldl,ll-lmkn |

As with Sy ™ and syOB ™ 5y TB > 0 means that the

horizon’s response leads the tidal field.

PHYSICAL REVIEW D 90, 124039 (2014)
Using Eq. (2.15), we see that

R‘l:mkn - _ 4 (;5 6 SlJrrnkn (2 75)
HH . 2 T . .
Y0, imkn pmkn(lpmkn + €) Slmkn

With a few definitions, this form expedites our identifica-
tion of 6y B, . First, note that p,,, and S}, are both real,
so the phase arises solely from the factor 1/(ip,.i, + 2¢€)
and the operator d 8. The first factor is easily rewritten in a

more useful form:

1 el arctan(p,,i,/2€)

LD mkn +2e /piznkn + 462

To clean up the phase associated with 89, we make a
definition:

(2.76)

58S+
6(35& = Zlmkn (H)e—is,mk”w).

Imkn

(2.77)

The amplitude ratio X,;,,;,(0) and phase S;,1,(0) must in
general be determined numerically. We will show expan-
sions for small a and slow motion in Sec. IV. We include
S}« in this definition because it may pass through zero at a
different angle than 33 S}, passes through zero. This will
appear as a change by x radians in the phase Sj,;,.
Combining Eqgs. (2.74)—(2.77) and using the fact that
€ = k/2 (where « is the black hole surface gravity), we at
last read out
5’//}:1]3]@1 = arctan (pmkn/K) + Slmkn (9> (278)
Recall that the wave number p,,;, = @pin — MLy In
geometrized units, k~! is a time scale which characterizes
how quickly the horizon adjusts to an external disturbance
(cf. Sec. VIC 5 of Ref. [11] for discussion). The first term
in Eq. (2.78) is thus determined by the wave number times
this characteristic horizon time. For a circular, equatorial
orbit which has Q;, = Qy, this term is zero, in accord with
the Newtonian intuition that the tide and the response are
exactly aligned when the spin and orbit frequencies are
identical. This intuition does not quite hold up thanks to the
correcting phase S, (6). We will examine the impact of
this correction in Sec. IV.
The phase Sy 1B, is particularly useful for describing the
horizon’s response to complicated orbits where the relative
geometry of the horizon and the orbit is dynamical. For
example, Vega, Poisson, and Massey [20] use a measure
similar to Sy B, to describe how a Schwarzschild black
hole responds to a body that comes near the horizon on a
parabolic encounter, demonstrating that the horizon’s
response leads the applied tidal field (cf. Sec. 5.2 of
Ref. [20]). We will examine Sy B, briefly for the circular,
equatorial orbits we focus on in this paper, but will use it in
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greater depth in a follow-up analysis that looks at tides from
generic orbits.

When a = 0, the operator 39 is real, and S, (0) = 0.
We have p,i; = @i, and k = 1/4M in this limit, so

B __
mkn

SYiB oo = 6 arctan (4M @, )- (2.79)
We will show in Sec. III that this agrees with the phase shift
obtained by Fang and Lovelace [22]. It also agrees with the
results of Vega, Poisson, and Massey [20], though in
somewhat different language. They work in the time
domain, showing that a Schwarzschild black hole’s horizon
response leads the field by a time interval kg, = 4M. For
a field that is periodic with frequency @, this means that we
expect the response to lead the field by a phase angle 4M w,
exactly as Eq. (2.79) says.

E. The down-horizon flux

Although not needed for this paper, we now summarize
how one computes the down-horizon flux. Our purpose is
to show that the coefficients Zgnkn which characterize the
geometry of the deformed event horizon also characterize
the down-horizon gravitational-wave flux, showing that the
“deformed horizon” and “down-horizon flux” pictures are
just different ways of interpreting how the horizon interacts
with the orbit.

Our discussion follows Teukolsky and Press [10], which
in turn follows Hawking and Hartle [32], modifying the
presentation slightly to follow our notation. The starting
point is to note that a tidal perturbation shears the
generators of the event horizon. This shear, o, causes the
area of the event horizon to grow:

4PA _2Mr+| :
dQdr e 7

(2.80)
We also know the area of a black hole’s event horizon,
A =8x(M* + vV M* - §?), (2.81)

where S = aM is the black hole’s spin angular momentum.
Using this, we can write the area growth law as

A 2M
A8 (g EM g SN o g
aQdi - - S dQdi " d%dr

Consider now radiation going down the horizon.
Radiation carrying energy dEY and angular momentum
dL" into the hole changes its mass and spin by

dM = dEH, ds = dL". (2.83)
Angular momentum and energy carried by the radiation are
related according to

PHYSICAL REVIEW D 90, 124039 (2014)

dL. = " dE.
D pmkn

(2.84)

Putting all of this together and using Eq. (2.5), we find

d*E" _ wmanr+ |0|2
)

— 2.85
dtdQ ~ 2xp,, (2.:85)

Lt mMr+‘ 2
=—|0|".

= 2.86
dtdQ ~ 2xp,, (2:86)

So to compute the down-horizon flux, we just need to
know the shear . It is simply computed from the tidal field
wiH. First, expand ¢ as

c = g Glmk”S?;nkn (e)ei[mvl_wmknv_’n[((a”.
Imkn

(2.87)

The shear mode amplitudes o6,,;, are related to the tidal
field mode ('}, by [10]:

. HH
WO, imkn

Olmkn = -
Pmkn — 2ie

(2.88)
Combine Eq. (2.88) with Eqgs. (2.13), (2.19), and (2.20).
Integrate over solid angle, using the orthogonality of the
spheroidal harmonics. Equations (2.85) and (2.86) become

dE> H |Zgnkn 2
- = Ak ) (2.89)
(dr 1;%;; i 47ra)fnkn
dLZ H m|ZEnkn|2
() = S i eo0)
Imkn mkn
The coefficient
" _ 256(2M 1)’ Pokn @
ik |szkn|2
X (Pon +4€°) (P + 16€%), (2.91)

with || given by Eq. (2.21), comes from combining
the various prefactors in the relations that lead to
Egs. (2.89) and (2.90). Notice that oy, % Pukn- This
means that a;,,, =0 when ,,, = mQy. The down-
horizon fluxes (2.89) and (2.90) are likewise zero for
modes which satisfy this condition.

It is interesting to note that the shear ¢,,, and the tidal
field w it ., are both proportional to p,,,, and hence both
vanish when ,,;,, = mQy. The horizon’s Ricci curvature

1 . . . ..
R;—I)lmkn does not, however, vanish in this limit.

Mathematically, this is because Rﬁ_),m,m includes a factor

of 1/puw Wwhich removes this proportionality
[cf. Eq. (2.2)]. Physically, this is telling us that when
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Qy = Q. the horizon is deformed, but the deformation is
static in the horizon’s reference frame. This static defor-
mation does not shear the generators, and does not carry
energy or angular momentum into the hole.

Equations (2.89) and (2.90) illustrate the point of this
section: The fluxes of E and L, into the horizon are
determined by the same numbers ZH = used to compute the
horizon’s deformed geometry, Eq. (2.25).

III. RESULTS I: SCHWARZSCHILD

Using the formalism we have assembled, we now
examine the tidally deformed geometry of black hole event
horizons. In this paper, we will only study the circular,
equatorial limit: The orbiting body is at r = r,, 6 = 7/2,
and ¢ = Q_,¢. Harmonics of Q4 and Q, can play no role in
any physics arising from these orbits, so the index set
{Imkn} reduces to {/m}, and the mode frequency ®,,;, to
,,. We will consider general orbits in a later analysis.

Before tackling general black hole spin, it is useful to
examine Eq. (2.25) for Schwarzschild black holes. Several
simplifications occur when a = 0:

(1) The radius r, = 2M; the frequency Qy = 0, so the
wave number p,, = w,,; the factor ¢ = 1/8M; the
phase factor K(a) =0 [cf. Eq. (1.13)]; and
the ingoing axial coordinate y = ¢.

(ii) The spin-weighted spheroidal harmonic becomes
a spin weighted spherical harmonic: ,S, (6) —

Y, (0). The eigenvalue of the angular function
therefore simplifies, as does the complex number c;,,,:
E=1l+1), and ¢, ={U+2){+DI{I-1)+
12iMw,),.

(iii) The angular operator d =9, =1/ (2\/§M)LS_

Using Eq. (2.50), we have

LSL LY, (0) =/ (1+2)(1+ DI(1-1),Y,,,

(3.1)

which tells us that

(3.2)
for a = 0.
Putting all of this together, for a = 0 we have
Ry, = Im[C,,, ZH ei®n]
H.Im Im%m
1
x o VI [+ DIT=1),7,0), (33)

where
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c — 1024M?*(iMw,, — 1/4)(Mw,, +i/2) 34
1+ 2) (L4 DI =1) + RiMw,, (3.4)
D, = mep — w,,v. (3.5)

A. Slow motion: Analytic results

We begin our analysis of the Schwarzschild tidal
deformations by expanding all quantities in orbital speed
u=(M/r,)"/>. We take all relevant quantities to O(u’)
beyond the leading term; this is far enough to see how the
curvature behaves for multipole index / < 4. These results
should be accurate for weak-field orbits, when u <« 1. In
the following subsection, we will compare with numerical
results that are good into the strong field.

Begin with C,,. Expanding Eq. (3.4), we find

16

Com = Ly V2 p (——zmu3) (3.6)
1

Cym = —EM2 p (——lmu3> (3.7)
15
16i 181

Cupm = —%Mz exp (—%imrﬁ). (3.8)

To perform this expansion, we used the fact that, for a = 0,
MQ, = 13, so Mw,, = mu’.

Next, we construct analytic expansions for the ampli-
tudes Z!! | following the algorithm described in Sec. II B.
All the results which follow are understood to neglect
contributions of O(u®) and higher. We also introduce , the
mass of the small body whose tides deform the black hole.

For [ = 2, the amplitudes are

3m u 7 561
ZH — T D2 T A )
20 \/10r3< R T

(3.9)

8 10§ 152
z4 = 3z\£”3 ( utZu o+ 3lu4+ o 5)
. Tu 8 152
= —31\/%7(3) <M +§u3 +ﬁu5
10
X exp ( 3 u3>, (3.10)
U 231 1403 473i
ZH _ H W22l 4 5
22 rg< 168 30 "

- am o
S 01,|t

le NIUJ

43
2"
L3, 1403,
2

< 168
_3 2t
314 +15u)}

X exp |i (3.11)
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For [ = 3,
Z5 = _"\/3(7)2%@‘3 + 4u), (3.12)
7Y = 51‘\/’;’2 (u® + 4u), (3.14)
2 =3 o (it )

= \/%M a)ep (fae). (9

Finally, for [ = 4,
ZH = —% 5;%144, (3.16)
z —%\/gr%us, (3.17)
i _ﬁ\/;rﬁgu{ (3.18)
i GO
7~ _143 ’;rﬁ 4, (3.20)
Note that ZH = (=1)!Z | where overbar denotes com-

plex conjugation.

It is particularly convenient to combine the modes in
pairs, examining RS,)l_m +R§11_)lm. Doing so, we find for
[ =2,

Ry = —%(300529 ~1) (1 +%u2 + %u“), (3.21)
R, + Ry, =0, (3.22)
Rihoo 4 Rilh = Hsivo (14 302 + S0t
X COS {2<¢—Qorbv—§u +352 5)}
(3.23)
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For [ = 3, we have

R =0, (3.24)
3 13
RYL  + Rl({l,>31 = 5% sin@(1 — 5cos°0)u? <1 +3 u2>
o
14 3
X COS (/b—Qorbv—?u , (3.25)
1 1
Rithz + Righy =0, (3.26)
5 .
s+ = S0 430

X COS {3 (qb - Qo — 1;.I/t3>:| . (3.27)

And, for [ =4,
9

R%{Lo: /2(3 30c0s%6 + 35cos*0)u*, (3.28)
s 561
RO+ RO, — 0. (3.29)
Ryy HA41 '
15
Rl il = 3 st Teoso
181
xcos{ (¢_Qorby—30u3>}, (3.30)
)43_|_ E_l) -0, (3.31)
15 181
R
3 r 30
(3.32)

In the next section, we will compare Egs. (3.21)-(3.32)
with strong-field numerical calculations. Before doing so,
we examine some consequences of these results and
compare with earlier literature.

1. Nearly static limit

In Ref. [15], Hartle examines the deformation of a black
hole due to a nearly static orbiting moon. To reproduce his
results, consider the u — 0 limit of Egs. (3.21)-(3.32).
Only the [ = 2, m = 0, m = %2 contributions remain when
u — 0. Adding these contributions, we find

Ry =

3cos? — 3sin*Ocos (2¢') — 1],  (3.33)

=l

where ¢’ = ¢p — Qv is the azimuthal coordinate of the
orbiting moon. Hartle writes® his result

¥Note that the result Hartle presents in Ref. [15] contains a sign
error. This can be seen by computing the curvature associated
with the metric he uses on the horizon [Egs. (5.10) and (5.13) of
Ref. [14]]. The embedding surface Hartle uses, Eq. (4.33) of
Ref. [15] [or (5.14) of Ref. [14]] is correct given this metric.
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1 4u 2u
Rijrie = 5 Pa(cosy) =25 E(Beosly— 1), (3.34)
ry Ty
where “y is the angle between the point of interest and the

d1rect10n to the moon” [Ref. [15], text following
Eq. (4.32)]. The angle y can be interpreted as 6 if we
place Hartle’s moon at 6,,,, = 0. To compare the two
solutions, we must rotate. One way to do this rotation is to
note that the equatorial plane in our calculation (0 = 7/2)
should vary with ¢’ as Hartle’s result varies with y. Put
0 =rx/2 and ¢’ = y in Eq. (3.33):

1
RH)|9:71/2,¢/:)( =3 (3 cos2y +1)
2
—?(3005 x—1). (3.35)
rO
Another way to compare is to note that the ¢ = 0 circle

should vary with angle in a way that duplicates Hartle’s
result, modulo a shift in angle, 0 = y + z/2:

1 H
RH> lomytn/2pr=0 = — 3 [Bcos®(y + 7/2)
- 3sin2(;( +x/2) +1]
(3sm y —3cos’y + 1)

K

(3cos v —1). (3.36)

w\g

Both forms reproduce Hartle’s static limit.

2. Embedding the quadrupolar distortion

At various places in this paper, we will examine the
geometry of a distorted horizon by embedding it in a
3-dimensional Euclidean space. The details of this calcu-
lation are given in Appendix B; equivalent discussion for
Schwarzschild, where the results are particularly clean, is
also given in Ref. [20]. Briefly, a Schwarzschild horizon
that has been distorted by a tidal field has the scalar
curvature of a spheroid of radius

rg = 2M {1 +) e, ¢>)} , (3.37)
Im
where, as shown in Appendix B 1 and Ref. [20],
2M? )
=————R; . 3.38
Elm (l+2)(l—1) H,im ( )

By considering a Schwarzschild black hole embedded
in a universe endowed with post-Newtonian tidal fields,
Taylor and Poisson [18] compute ¢, in a post-Newtonian
framework. Specializing to the tides appropriate to a binary
system, they find
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1
<1+2u )(1 —cos6)
3,LtM2
b2

ZEZm 9 ¢

(1 —%uz) sin?@cos[2(¢h — Qo v)].
(3.39)

This is Eq. (8.8) of Ref. [18], with M, — u, M; - M,
v/ c = u, and expanded to leading order in p. Their
parameter b is the separation of the binary in harmonic
coordinates. Using the fact that r; = rg — M (with “H” and
“S” subscripts denoting harmonic and Schwarzschild,
respectively), it is easy to convert to r,, our separation in
Schwarzschild coordinates:

1 1 1
5=y = (143
b o1 (1+3u).

Yy (3.40)

Replacing b for r, and truncating at O(u?), Eq. (3.39)

becomes

1) ﬁf

FIG. 1 (color online). Convergence of contributions to the
horizon’s tidal distortion. We show Rﬁl)l summed over m for a
given I, scaled by a factor (r3/u) to account for the leading
dependence on small body mass and orbital radius. The largest
amplitude oscillation is for / = 2 (red in color). The next largest is
[ = 3 (green), followed by [ = 4 (blue), [ = 5 (magenta), with the
smallest oscillations shown for /=6 (cyan). (Higher order
contributions are omitted since their variations cannot be seen
on the scale of this plot.) These curves are for a circular orbit
at r, = 6M, which has u = 0.41, the largest value for the
Schwarzschild cases we consider. As such, this case has the
slowest convergence among Schwarzschild orbits. The falloff
with [ is more rapid for all other cases.

(r3/u) RY
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Zszm (0,9) = <1+;u >(1—00529)

3uM? 3
+ 'I; 1+=u? |sin’0cos [2(¢ — Qo v)].
ry 2 2

(3.41)

Comparing with Egs. (3.21) and (3.23) and correcting for the

factor M? /2 which converts curvature Rg )2m to &,,, We see

agreement to O(u?).

3. Phase of the tidal bulge

Using these analytic results, let us examine the notions of
bulge phase introduced in Sec. II D. First consider the
position of the bulge versus the position of the orbit
according to the null and instantaneous maps (which are
identical for Schwarzschild), Eq. (2.70). The various modes
which determine the shape of the horizon all peak at angle
¢ = Qv + 6¢p(u), where 6¢(u) can be read out of
Egs. (3.21)—(3.32). For Schwarzschild » =0, and the
ingoing angle w = ¢. The orbit’s position mapped onto
the horizon is ¢pYM = ¢, = Qo v + A(r,), Where

Ag(ry) = (3.42)
is Eq. (2.67) for a = 0. The result for the bulge’s offset
from the orbit is

_Qorb V:;

a:0r:5OM(12)

4 B ] L
R _ 005f
¥ 2| - &
3 3
~ ~
% 5%
E o -4 & H
r -0.05 |
-2, | Ll i
0 2 4 6
]
0.0015 Ff "7
. 0.001 F ~
=z n Tz
4 E [+
3 0.0005 3
>~ r Y
P o Y
1S - )
= of &
—0.0005 |
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8 32

598 ——u3—?u — Agp(r,), (3.43)
14

5¢31 —547 :—” —A(j)(ro) (3.44)

5% = 6958 = S~ Ap(r). (345

For the multipoles which we do not include here, no useful
notion of bulge position exists: For m = 0 the bulge is
axisymmetric, and for the others, the bulge’s amplitude is
zero to this order. Our results for [ = |m| = 2 agree with
Fang and Lovelace; cf. Eq. (4) of Ref. [22].

Consider next the relative phase of the tidal bulge and the
perturbing field, Eq. (2.79). For small u, we have

SPIP = dmu?. (3.46)
This again agrees with Fang and Lovelace—compare
Eq. (6) of Ref. [22], bearing in mind that m is built into
their definition of the offset angle [their Eq. (50)], and that
they fix m = 2.

In both cases, note that the bulge’s offset is a positive
phase. This indicates that the bulge leads both the orbiting
body’s instantaneous position, as well as the tidal field
that sources the tidal deformation. As discussed in the
Introduction, this is consistent with past work, and is a
consequence of the horizon’s teleological nature.

(1)
H

(r3/m) RP
(r3/u) R

1)

FIG. 2 (color online). Comparison of numerically computed scalar curvature perturbation R% for Schwarzschild with the analytic

expansion given in Egs. (3.21)—(3.32). The four panels on the left compare numerical [red (dark gray)] and analytic [green (light gray)]

results for an orbitat r, = 50M. Panels on the right are for r, = 6M. In both cases, we plot (3 /)Ry >, scaling out the leading dependence

on orbital radius and the orbiting body’s mass. We show contributions for / = 2, [ = 3, and [ = 4, plus the sum of these modes. For
ro = 50M, we have u = 0.14, and we see very good agreement between the numerical and analytic formulas. In several cases, the
numerical data lie on top of the analytic curves. For r, = 6M, u = 0.41, and the agreement is not as good. Although the amplitudes
disagree in the strong field (especially for large [), the two computations maintain good phase agreement well into the strong field.
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r, = 50M a=0 r, = 20M a=0
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FIG. 3 (color online). Equatorial section of the embedding of
a distorted Schwarzschild horizon. Each panel shows the
distortion for a different orbital radius, varying from r, =
50M to r, = 6M. The black circles are the undistorted black
hole, and the red curves are the distorted horizons, embedded
with Eq. (3.38). These plots are in a frame that corotates with
the orbit, and are for a slice of constant ingoing time v. The
green dashed line in each panel shows the angle at which the
tidal distortion is largest; the black dotted line shows the orbit’s
position. Notice that the bulge leads the orbit in all cases, with
the lead angle growing as the orbit moves to smaller orbital
radius. We have rescaled the horizon’s tidal distortion by a
factor o rJ/u so that, at leading order, the magnitude of the
distortion is the same in all plots.

B. Fast motion: Numerical results
Our numerical results for Schwarzschild black holes are

summarized by Figs. 1, 2, and 3. We compute RI(_II) by
solving for Z! numerically as described in Sec. II B, and
then applying Eq. (3.3). All of our results illustrate
quantities computed in the black hole’s equatorial plane,
6 = n/2. We include all contributions up to / = 15 in the
sum. Figure 1 shows that contributions to the horizon’s
scalar curvature converge quite rapidly. The contributions
from [ = 15 are about 10~° of the total for the most extreme
case we consider here, r, = 6M.

Figure 2 compares the analytic predictions for RY
[Egs. (3.21)—(3.32)] with numerical results for [ =2,
=3, and [ =4, and for two different orbital radii
(ro, =50M and 6M). The agreement is outstanding for
the large radius orbit. Our numerical and analytic predic-
tions can barely be distinguished at / =2 and [ = 3, and
differ by about 10% at maximum for / =4 (where our
analytic formula includes only the leading contribution to
the curvature). The agreement is much poorer at small
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radius. At r, = 6M, disagreement is several tens of percent
for [ = 2, rising to a factor ~5 for / = 4. For both the large
and small radius cases we show, the sum over modes is
dominated by the contribution from /= 2. The phase
agreement between analytic and numerical formulas is
quite good all the way into the strong field, even when the
amplitudes differ significantly.

Figure 3 shows distorted black holes by embedding the
horizon in a 3-dimensional Euclidean space, as discussed in
Sec. III A 2. Now, we do not truncate at [ = 2, but include
all moments that we calculate. We show the equatorial
slices of our embeddings for several different circular orbits
(ro = 50M, 20M, 10M, and 6M). In all of our plots, we
scale the horizon distortion ¢;,, by a factor proportional to
r3/u so that the tide’s impact is of roughly the same
magnitude for all orbital separations.

The embeddings are shown in a frame that corotates with
the orbit at an instant v = constant. The x axis is at ¢ = 0,
so the orbiting body sits at ¢ = A¢(r,) = —Qq 7. In each
panel, we have indicated where the radius of the embedding
is largest (green dashed line, showing the angle of greatest
tidal distortion) and the angular position of the orbiting
body (black dotted line). In all cases, the bulge leads the
orbiting body’s position, just as predicted in Sec. IIT A 3.
The numerical value of the bulge’s position relative to the
orbit, 6¢p™™, agrees quite well with 6¢ng, Eq. (3.43). From
Fig. 3, we have

Sp™™ = 9.56° ro = 50M,
=17.3° ro = 20M,
=27.8° ro = 10M,
=37.6° ro = 6M. (3.47)
Equation (3.43) tells us
6(/)%3 =9.54° ro = 50M,
:17.10 r0:20M9
= 26.8° ro = 10M,
=35.0° ro = 6M. (3.48)

In all cases, the true position of the bulge is slightly larger
than 6¢%B. This appears to be due in large part to the
contribution of modes other than / = |m| = 2; the agree-
ment improves if we calculate §¢™™ using only the [ =2
contribution to the embedding.

IV. RESULTS II: KERR

Now consider nonzero black hole spin. We begin with
slow motion and small black hole spin, expanding
Eq. (2.25) using u= (M/r,)"> <1 and g =a/M < 1,
and derive analytic results which are useful points of
comparison to the general case. We then show numerical

124039-17



STEPHEN O’SULLIVAN AND SCOTT A. HUGHES

results which illustrate tidal deformations for strong-field
orbits.

A. Slow motion: Analytic results

Here we present analytic results, expanding in powers of
u=(M/r,)"/?and ¢ = a/ M. We take all relevant quantities
to order > and ¢ beyond the leading term; this is far enough to
see how quantities behave for / < 4. We compare with strong-
field numerical results in the following subsection.

Begin again with C;,,,. Neglect the k and » indices which
are irrelevant for circular, equatorial orbits, and expand
A=Ay + (aw,,)d;, with 4y and 4, given by Egs. (C7) and
(C9) for s = —2 [recall that A comes from the spheroidal
harmonic S;, (0)]. Finally, expand to O(«’) and O(q).
Doing so, Eq. (2.26) yields

PHYSICAL REVIEW D 90, 124039 (2014)

16i 1
———m(1- 2,3
Cim 15 ( 3qmu)
61 3
—im(—u® -2 42
xexp{ tm<10u 2q>}, (4.2)
160 24 4
Capm 45M <1 S5 amu
181 , 3
—im( —u—2q)|. 4.
xexp[ 1m<30u 2q>] (4.3)

These reduce to the Schwarzschild results, Egs. (3.6)—(3.8),
when g — 0.

Next, the amplitudes Zl}fn, again following the algorithm
described in Sec. II B. These results should be understood to

X exp [—im <E u — éq)] , (4.1)  neglect contributions of O(u®), O(¢*) and higher. As else-
2 2 where, p is the mass of the smaller body. For [ = 2, we have
|
3m u 561
7=\ (150 —dqu + ut = 1807, (4.4)
LT i 2 8 4i 10§ 1 152 368
2?1“3’\[35{(1‘5‘1)“‘5‘1“”(5‘?)“”[TW@‘?M““(H‘@ a)e
Cmu 3 15 /10 q
-l o3 G D+ ] (23]
’\[5r3”3q”+3” PRV AR TR A S L (43)
3 jmp 3i 23i 4r? 1403 1403
-4 {1-10s Q-2 [ () (-
2 2\@@ 3754 3 " 34" T e ™ 168 I
[473i+(2449 ) ) } 5}
——— —27%)q|u
30 " \790 7
3 nu 3 22 4n? 1403 103 23 64
Dl B s (Rre)oou [ @S]
2\£r§,[+2”+<3 3 )1 e T g AT exp i\ 50— 4 (4.6)
For [ =3
3074 4 3
3 [Sap i 13 13i 43 247 n?
zH — _Z [T 1—-2= 2 o 4 B e 5
31T 14@{( 6q)”+<3 18 )”+{30 (180+3>"}”}
3571/1 13, 29 n? 5 (43 5 g
—24/ P aapr . A ) 4.8
2 14r[”+3” (18+3 @ PN 30" T (48)
Zt =50 Zﬁ[(l—iq)u3—§qu4+4(l—iq>u5}
2 7r3 3 + 3
u 3 .
=5i \/;rg (u —un + du )exp(—lq/3), (4.9)
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(e 2 [ (5
Z\/iq2+3u4+<§—3n2> ]exp[( )] (4.10)

And for [ = 4,
9 [Szu
ZH - ___ 4 4.11
=T\ 2 a (4.11)
45 [mu i | 451 [zu
zH =12 \V33 K] +12q>u5 4\ S u’exp (ig/12), (4.12)
15 —u i 1 15 —u ,
ZH — = 14+ Y ==z u 4.1
42 14\/;;’% < +6Q>u_ ]4\/70[7'(3)’4 exp(zq/6), ( 3)
15i /7 p | i | 15i
2= 2Rl )us| = =2 [ B 4 4.14
=S| (1 )] == 5 T e ars), (4.14)
15 [zu]| i | 15 /zu
s _ P lg)ut] = 212 [FE 3 4.15
8 T )] - gt s
|
Equations (4.4)—(4.15) reduce to Eqs..(3.9)—(.3.20) when S;n =,Y,, +qMw,, [CfrJranY(H—l)m 4 C5;112Y(l—1)m]’
g — 0. Modes for m < 0 can be obtained using the rule 417
= (-1)!Z1 | with overbar denoting complex conju- (4.17)
gate. C R E ot . where
Lastly, we need the angular function 0 S, to leading
order in ¢g. Using Egs. (2.53), (2.54), (2.59), and the
condition g < 1, we have S 2 (I+3)(I-D(I+m+1)(l-m+1)
fm (I+1)? (21 +3)(21+ 1) ’
. 1 .
66SL:WLSLS(1+zqc059)S;;n (4.18)
1
— ; s TS Qt ; : s ¢t
fm[(l+zqcos€)L_L_S,m—21qsm0L_Slm}. 2 [+ 2) (= 2)(+m)(1—m) 419
(4.16) T Qi+ 1)@i-1) '

Following the analysis in Appendix C, the spheroidal  Using Eq. (2.50) with Egs. (4.16) and (4.17) and expanding
harmonic to this order is to leading order in g, we find

5 x 1 . .
33S; = W[(l +igcos @)/ (I +2)(1+ 1)I(I=1),Y,, —2igsin0+/(1+2)(I - 1),Y,,
+ qMa,, (ci' /(L4 3) L+ 2) L+ DIY (g + iV U+ DI =1)(1=2)Y 1y, (420)

As in Sec. IIT A, it is convenient to combine modes in pairs. For [ = 2, we find

1
Rithy = =45 (3c0s?0 — 1)( +;u2 —4qu’ + %u“ - 18qu5>, (4.21)

o‘wl =

124039-19



STEPHEN O’SULLIVAN AND SCOTT A. HUGHES

PHYSICAL REVIEW D 90, 124039 (2014)

4u 8 152 3
Rg)z L+ R = ?(500529 —1)sinfq (u +3 u +—— X 5> cos (l// - Qv — §u3 + 6MQH>, (4.22)
o
3 3 4 1403 131
Rg,)z—z + Rg,éz = r—?s nzé{l + 5“2 - <10 —|—%> qu® + gV ut — (T + 2n2)qu5}
8 32 14
X COS {2(1// Qo —gu +—= 5 w+— 3 MQHH (4.23)
For [ = 3,
Rhy = =5 (1= 120520 + 15c0s*0) quid (1 + 4u?), (4.24)
, 2
1 N 13 113 22 14 420
Ry, +RYS, = 3 0(1 — 5c0s20) u> [1 oy - (E +5 4| cos |w = Qupv =T ud + TMQy | (425)
5 56 22
Ry, + RyY, = 3% (1 + 4u5){900520cos [2 <1// = Qv =75 —ud+ = 3 MQH)]
158 22
— COS |:2 <l// Qorbf) 30 3 ?MQH>:| }, (426)
5 49 14 20
R;Ilé_3 + Rg’)g,3 = —%Sin39u2 1 +3u® - + 372 cos 3|y — Qupv — —u® + —MQy (4.27)
27 2 33
And for [ = 4,
u
Rk = <¢ 3 (3= 30c0s% + 35cos 0’ (4.28)
0
9 u 169 . 25
RY,  +RY), = g3 Oqu’ [98cos48cos <1// Qv =3 ud + ?MQH)
1568 25 77 25
—57c0s%6 cos <1;/ — Q¥ — 285 w4 = 3 MQH> + 3 cos (l// — Qv — Bu +—= 3 MQH>} (4.29)
5u . 181 . 119
R+ Ry, = ﬁr—gsmzﬁ(l — Tcos?0)u* cos [2 <1// Quipt =55 + FMQHH (4.30)
3u 169 25
RSL_3 +RSLS = Z—3s1n36'qu {1400526c0s [3 <1// Qo — 30 ud + ?MQHH
77 25
—cos |3y — Qv — —u’ +—MQy (4.31)
15 3
1 181 119
R,y + R, = 2 Esinut cos |4y — Qo — ot + — MQy (4.32)
8 1 ERST

In writing these formulas, we have used the fact that Qy =
q/4M in the g < 1 limit to rewrite certain terms in the
phases using Qy rather than ¢. For example, in Eq. (4.23)
our calculation yields a term 7¢/6 in the argument of the
cosine, which we rewrite 14MQy; /3. We have found that this
improves the match of Egs. (4.21)—(4.32) with the numerical
results we discuss in Sec. IV B.

I
1. Phase of the tidal bulge: Null map

We begin by examining the bulge-orbit offset using the

null map, Eq. (2.70). The horizon’s geometry is dominated

by contributions for which / 4 m is even; modes with [ + m

odd are suppressed by qu relative to these dominant modes

(thus vanishing in the Schwarzschild limit). The dominant
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bulge

modes peak at 5t = Qv+ 8y (u) + Syin(q).
where Sy, (u) and Sy, (¢) can be read out of
Eqgs. (4.21)—(4.32). The orbit mapped onto the horizon
in the null map is given by Eq. (2.68). Following discussion
in Sec. IID 1, the offset phases in the null map for the
dominant modes, to O(x’) and O(q), are

8 32 4AM*Q
Sy ™™ = 5(”3_MQH)_?”5_ . 2 - Ay(r).
(0
(4.33)
P = sy
14 AM>Q
3 (00 = MQy) - ——= = Ap(r,),  (4.34)
N = g
181 . 89 AMPQy
— = MQy - — Ay(r
30 15 H ) ( o)
(4.35)

We again see agreement with Fang and Lovelace for
[ =m =72, who correct a sign error in Hartle’s [15]
treatment of the bulge phase; compare Eq. (61) and
footnote 6 of Ref. [22] and associated discussion. In
contrast to the Schwarzschild case, the Kerr offset phases
can be positive or negative, depending on the values of r,
and ¢. To highlight this further, let us examine Eq. (4.33)

for very large r,: We drop the term in u°, and expand
Ay (r,). The result is
8 M
rO

As r, — oo, we see that this bulge lags the orbit by
598 M = —8MQy;/3, which reproduces Hartle’s finding
for a stationary moon orbiting a slowly rotating Kerr black
hole [Eq. (4.34) of Ref. [15], correcting the sign error
discussed in footnote 6 of Ref. [22]]. We discuss this point
further in Sec. V.

2. Phase of the tidal bulge: Instantaneous map

Consider next the instantaneous-in-v map discussed in
Sec. I D 2. The position of the orbit on the horizon in this
mapping is given by Eq. (2.72). To O(«’) and O(q), the
offset phase for the dominant modes in this map is

8 14 32

OB — —Su w3 — ?M'QH -5 w — Ay(r,), (4.37)
R = gy
14 20
=3 ul — ?M,QH w(ry), (4.38)

PHYSICAL REVIEW D 90, 124039 (2014)

OB-IM _ g5,,0B-IM

2777 Va4
181 , 119
=— -2 MO . 4.
o MO~ Ay(r,). (439)

As in the null map, these phases can be positive or negative,
depending on the values of r, and g. As we’ll see when we
examine numerical results for the horizon geometry,
Eq. (4.37) does a good job describing the angle of the
peak horizon bulge for small values of g.

3. Phase of the tidal bulge: Tidal field versus
tidal response

Flnally, let us examine the relative phase of tidal field
modes w{l and the horizon’s response RH - FOr g < 1,
we have K_l = 4M + O(q*). Expanding in the weak-field
limit, Eq. (2.78) becomes

SylB =am(u® — MQy) + S (7/2). (4.40)
For the modes with [+ m even which dominate the
horizon’s response, it is not difficult to compute

Sin(7/2) to leading order in ¢. Equation (4.20) and the
definition (2.77) yield

2q lYlm(”/z)

Sim(7/2) = +0(g%). (441
We also know [cf. Eq. (A8) of Ref. [34]] that
1
IYlm(g) = —m(ag — M CSC Q)OYlm(Q) (442)

For [+ m even, 0y,Y,, =0 at 6 = /2. Plugging the
resulting expression for Y, (z/2) into Eq. (4.41), we find

SmMQH
(I+1)°

2mq
I(+1)

Sim(n)2) = (4.43)

where in the last step we again used ¢ = 4M?Qy, accurate
for g <« 1. With this, Eq. (4.40) becomes

)

(I+2)(-1)
I(1+1) ]

SyTB =4m [u3 - MQy <1 -

=4m [u3 - MQy (4.44)

Just as with the offset phases of the bulge and the orbit for
Kerr, this tidal bulge phase can be either positive or
negative depending on r, and ¢, and so the horizon’s
response can lead or lag the applied tidal field.
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B. Fast motion: Numerical results

Figures 4, 5, and 6 present summary data for our
numerical calculations of tidally distorted Kerr black holes.
Just as in Sec. III B, we compute RS ) by solving for Z}',In as
described in Sec. II B, and then apply Eq. (2.25). As in the
Schwarzschild case, we find rapid convergence with mode
index /. All the data we show are for the equatorial plane,
0 = r/2, and are rescaled by (r3/u). We typically include
all modes up to / = 15 (increasing this to 20 and 25 in a few
very strong-field cases). Contributions beyond this are
typically at the level of 10~ or smaller, which is accurate
enough for this exploratory analysis.

Figure 4 is the Kerr analog of Fig. 2, comparing
numerical results for R%fn with analytic predictions for
selected black hole spins, mode numbers, and orbital radii.
For all modes we show here, we see outstanding agreement
in both phase and amplitude for ¢ = 0.1 and r, = 50M; in
some cases, the numerical data lies almost directly on top of
the analytic prediction. The amplitude agreement is not
quite as good as we increase the spin to ¢ = 0.2 and move
to smaller radius (r, = 10M), though the phase agreement
remains quite good for all modes.

Figures 5 and 6 show equatorial slices of the embedding
of distorted Kerr black holes for a range of orbits and black
hole spins. These embeddings are similar to those we used

0.1M, r, = 50M (2,2)
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— — e e
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FIG. 4 (color online).
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for distorted Schwarzschild black holes (as described in
Sec. III A2), with a few important adjustments. The
embedding surface we use has the form

re = r2(0) + ) een(0.y). (4.45)
‘m

Both the undistorted radius rg)) (0) and the tidal distortion
e,m(0,y) are described in Appendix B; see also Ref. [23].
The background embedding reduces to a sphere of radius
2M when a = 0, but is more complicated in general. The
embedding’s tidal distortion is linearly related to the
curvature RHlJm, but in a way that is more complicated
than the Schwarzschild relation (3.38). In particular, mode
mixing becomes important: Different angular basis func-
tions are needed to describe the curvature Rg?lm and the
embedding distortion &,,, when a # 0. Hence, the £ = 2
contribution to the horizon’s shape has contributions from
all / curvature modes, not just / = 2. See Appendix B for
detailed discussion.

In this paper, we only generate embeddings for a/M <
v/3/2. For spins greater than this, the horizon cannot be
embedded in a global 3-dimensional Euclidean space. A
“belt” from 7 — g < 6 < O can always be embedded in
3-dimensional Euclidean space, but the “polar cones”
0<60 <06 and 7 — 0 < 8 <7 must be embedded in a

a = 02M, r, = 10M (2,2) a = 02M r, = 10M (3,2)
T e e
] 0.01 |
Sz 1 Zz
o 4 &
3 -4 32 0
N 4
7 -0.01 [
a=02M r, = 10M (4,1)
0.001 F T T T
. 0.0005 [ 4 . 002p
Zz r ] Zz
5 C 1 &
& oF 4 32 0
N C 1 >
E - 1Z
~0.0005 |- 3 002
—-0.001 B, ., Ll -
0 2 4 6

Comparison of selected modes for the numerically computed scalar curvature perturbation Rg)lm with the analytic

expansion given in Eqgs. (4.21)—(4.32). The four panels on the left are for orbits of a black hole with @ = 0.1M at r, = 50M; those on the
right are for orbits of a black hole with a = 0.2M at r, = 10M. The mode shown is indicated by (/, m) in the upper right corner of each

panel [we actually show the contributions from (I, m) and (1, —m)]. In all cases, we plot (r3/ ,u)RE{l ), scaling out the leading dependence on
orbital radius and the orbiting body’s mass. Curves in light gray (green) are the analytic results, those in dark gray (red) are our numerical
results data. Agreement for the large radius, low spin cases is extremely good, especially for small / where the numerical data lies practically
on top of the analytic predictions. As we increase ¢ and decrease r,, the amplitude agreement becomes less good, though the analytic
formulas still are within several to several tens of percent of the numerical data. The phase agreement is outstanding in all of these cases.
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r, = 50M a = 0.1M r, = 20M a = 01M r, = 50M a = 0.4M r, = 20M a = 0.4M

t\c\‘u\\‘Hu‘uu‘uu‘ut i\u\‘u\\‘Hu‘uu‘uu‘ut t\c\‘u\\‘Hu‘uu‘uupwt i\u\‘HH‘HH‘HH‘HH‘Ht

2 = 2 = P = 2 =
1 = 1E 4 1 = 1E =

C Symum = 3.01° ] C Syrum = 10.8° ] C ] C Syrum = —6.17° ]

2 ok 4 2 ok — JH 2 oE 1 2 of 3
> = b > = b > = b > = b
1E 3k 3Tk 3k :
2 F = 2 = 2 F = 2 F =
:\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\7 7\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\7 :\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\7 7\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\7

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

r, = 10M a = 0.1M r, = 5.669M a = 0.1M r, = 10M a = 0.4M r, = 4.614M a = 0.4M
(RNRRRRNRRRRNRER RN RRRRNRRE FTTTTTT T TIT T[T TTTT 7T (RNRRRRNRRRRNRER RN RRRRNRRE/ RNRRRRNRRRRRRRRRN RRRRN R

2 F E ] E : E
E ER E E 3 E

C Symum = 21.8° ] C " C Symum = 3.55° ] C Synum = 21.4° ]

2 of ) 2 oF 3 : : ]
> = B > = A > = B = B
-1 F = -1 = -1 F — - —
2 = 2 4 2 = - =
P T S N A Bl bbb 1o P T S N A P S N N A

-2 -1 0 1 2 -2-1 0 1 2 -2 -1 0 1 2 -2-1 0 1 2

FIG. 5 (color online). Equatorial section of the embedding of distorted Kerr black hole event horizons, a = 0.1M and a = 0.4M. Each
panel represents the distortion for a different radius of the orbiting body, varying from r, = 50M to the innermost stable circular orbit
(ro =5.669M for a = 0.1M, r, = 4.614M for a = 0.4M). As in Fig. 3, the green dashed line shows the angle at which the tidal
distortion is largest, and the black dotted line shows the position of the orbit. As in Fig. 3, we have rescaled by a factor « 73 /u to account
for the leading dependence of the tide on mass and orbital separation. In contrast to the Schwarzschild results, the bulge does not lead the
orbit in all cases here. The amount by which the bulge leads the orbit grows as the orbit moves to small orbital radius (in some cases,
changing from a lag to a lead as part of this trend).
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FIG. 6 (color online). Equatorial section of the embedding of distorted Kerr black hole event horizons, a = 0.7M and a = 0.866M.
Each panel represents the distortion for a different radius of the orbiting body, varying from r, = 50M to the innermost stable circular
orbit (r, = 3.393M fora = 0.7M, r, = 2.537M for a = 0.866 M), with the green dashed and black dotted lines labeling the locations of
maximal distortion and position of the orbit, respectively, and with the distortion rescaled by a factor  r3 /u. The bulge lags the orbit in
most cases we show here, with the lag angle getting smaller and converting to a small lead as the orbit moves to smaller and smaller
orbital radius.
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Lorentzian geometry (where 6 is related to the root of a
function used in the embedding; see Appendix B for
details). Alternatively, one can embed the entire horizon
in a different space, as discussed in Refs. [24,25]. We defer
detailed discussion of embeddings that can handle the case
a/M > +/3/2 to a later paper.

As with the Schwarzschild embeddings shown in Fig. 3,
the Kerr embeddings we show are all plotted in a frame that
corotates with the orbit at a moment v = constant. The x
axis is at w =0, and the orbiting body sits at
v = Ay(ry) = 7o — Qo rs. As in Fig. 3, the green dashed
line labels the horizon’s peak bulge, and the black dotted
line shows the position of the orbiting body.

For small ¢, we find that the numerically computed bulge
offset agrees quite well with the / = 2 analytic expansion in
the instantaneous map, Eq. (4.37). For ¢ =0.1, our
numerical results are

Sy™m =3.01°  r, = 50M,
=108  r,=20M,
=216  r,=10M,
=33.7° 1, =5.669M. (4.46)

These are within a few percent of predictions based on the
weak-field, slow-spin expansion:

SySPM =295 r,=50M,
—107°  r, = 20M,
—206° r,— 10M,
—300° £, =5.669M.  (4.47)

FIG. 7 (color online).
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As we move to larger spin, the agreement rapidly becomes
worse. Terms which we neglect in our expansion become
important, and the mode mixing described above becomes
very important. For g = 0.4, the agreement degrades to a
few tens of percent in most cases:

Sy™m = —13.5° ro = 50M,
=—-6.17° ro = 20M,
= 3.55° ro = 10M,
=214° r, = 4.614M; (4.48)
and
SyOB M — —17.9° ro = 50M,
= -9.76° ro = 20M,
=0.82° ro = 10M,
=13.6° ro =4.614M. (4.49)

The agreement gets significantly worse as g is increased
further. Presumably, g ~ 0.3 is about as far as the leading
order expansion in ¢ can reasonably be taken.

To conclude this section, we show two examples of
embeddings for the entire horizon surface, rather than just
the equatorial slice. The left-hand panel of Fig. 7 is an
example of a relatively mild tidal distortion. The black hole
has spin a = 0.3M, and the orbiting body is at r, = 20M.
The distortion is strongly dominated by the # = 2 con-
tribution, and we see a fairly simple prolate ellipsoid whose
bulge lags the orbit. The right-hand panel shows a much
more extreme example. The black hole here has
a = 0.866M, and the orbiting body is at r, = 1.75M.

~

Two example embeddings of the tidally distorted horizon’s surface. Both panels show the 3-dimensional Euclidean

embedding surface, rg (0, w); the shading (or color scale) indicates the horizon’s distortion relative to an isolated Kerr black hole. The hole is
stretched (i.e., rg increased by the tides relative to an isolated hole; red or dark gray) at the end near to and opposite from the orbiting body. Itis
squeezed (rg decreased by tides; blue or light gray) in a band between these two ends. As in other figures illustrating the embedded distorted
horizon, we have rescaled the distortion by a factor o 73 /. On the left, we show a relatively gentle deformation around a moderately
spinning black hole: a = 0.3M, r, = 20M. The distortion here is dominated by a quadrupolar deformation of the horizon (lagging the
orbiting body, whose angular position is indicated by the small blue ball). On the right, we show a rather extreme case: a = 0.866M,
r, = 1.75M. The deformation here is much more complicated, as many multipoles beyond [ = 2 contribute to the shape of the horizon.
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The horizon’s shape has strong contributions from many
multipoles, and so is bent in a rather more complicated way
than in the mild case. The connection between the orbit and
the horizon geometry is quite unusual here. Note that this
extreme case corresponds to an unstable circular orbit, and
so one might question whether this figure is physically
relevant. We include it because we expect similar horizon
distortions for very strong-field orbits of black holes with
a/M > /3/2, and that such a horizon geometry will be
produced transiently from the closest approach of eccentric
orbits around black holes with a/M < v/3/2. Both of these
cases will be investigated more thoroughly in later papers.

V. LEAD OR LAG?

We showed in Sec. I E that the orbital energy evolves
due to horizon coupling according to dEM/dt«
(Qory — Qp)- As discussed in the Introduction, it is simple
to build an intuitive picture of this in Newtonian physics.
For a Newtonian tide acting on a fluid body, when Qy >
Q. tidal forces raise a bulge on the body which leads the
orbit’s position. This bulge exerts a torque which transfers
energy from the body’s spin to the orbit. When Qy < Q 4,
the bulge lags the orbit, and the torque transfers energy
from the orbit to the body’s spin. When Qy = Q. 4,
dEM /dt = 0. The Newtonian fluid expectation is thus that
there should be no offset between the bulge and the orbit.
The tidal bulge should point directly at the orbiting body,
locking the body’s tide to the orbit.

Consider now a fully relativistic calculation of tides
acting on a black hole. When Q 4, > Qy (e.g., the
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FIG. 8 (color online).
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Schwarzschild limit) and Qy > Q. (large radius orbits
of Kerr black holes), the Newtonian fluid intuition is
consistent with our results, modulo the switch of “lead”
and “lag” thanks to the teleological nature of the event
horizon. However, it is not so clear if this intuition holds up
when Q, and Qy are comparable in magnitude.

Let us investigate this systematically. Begin with the
weak-field / = m = 2 offset angles in the null and instan-
taneous maps, Eqs. (4.33) and (4.37). Dropping terms of
O(u’) and noting that u? = MQ_,, + O(qu®), we solve for
the conditions under which sy $E™ and sy Q8™ are zero.
In the null map, we find

3MQy 38y,

Q. =Q .
orb = S 2r, SM

(5.1)

The bulge leads the orbit when the equals in the above
equation is replaced by greater than, and lags when
replaced by less than. In the instantaneous map,

7 3A
Qorb = 7QH + Yo

, 52
4 &M (52)

with the same replacements indicating lead or lag.
Neither of these conditions are consistent with Q4 =
Qy indicating zero bulge-orbit offset. In both the null
and instantaneous maps, we find Qg , << Qy when the
bulge angle is zero. For example, for a = 0.3M (roughly
the largest a for which the small spin expansion is trust-
worthy), Eq. (5.1) has a root at r, = 35.9M, for which

r,= 3.647M & = 0.5M r,=3.078M  a = 0.6M
[ T ‘ T T T ‘ T T T ‘ T [ T ‘ T T T ‘ T T T ‘ T ]
2 - 2
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2 — —
= - Symem = 14.9° g
~ 0 H
EN L |
72 — —
L Il ‘ Il Il Il ‘ Il Il Il ‘ Il ] Il ‘ Il Il Il ‘ Il Il Il ‘ Il
-2 0 2 -2 0 2
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Embedding of distorted Kerr black hole event horizons for a corotating orbit—i.e., an orbit for which

Qop = Qn. As in Figs. 3, 5, and 6, the green dashed line points along the direction of greatest horizon distortion, and the black dotted
line points to the orbiting body; the distortions are all scaled by a factor o r3/u. At very small spins (for which the corotating orbital
radius is very large), the bulge lags the orbit slightly, but the bulge leads for all other spins.
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MQ ., = 0.00464, MQy = 0.0768. (A second root exists
at r, = 2.15M, but this is inside the photon orbit.) Using
the instantaneous map changes the numbers, but not the
punch line: For a = 0.3M, the root moves to r, = 16.7M,
with MQ 4, = 0.0146. Changing the spin changes the
numbers, but leaves the message the same: Zero offset
in these maps does not correspond to Q. 4, = Q.

Equations (5.1) and (5.2) were derived using a small spin
expansion. Before drawing too firm a conclusion from this,
let us examine the situation using numerical data good for
large spin. In Fig. 8, we examine a sequence of “corotating”
orbits—orbits for which Qy = Q,, so that dE/dt = 0.
For very small spins, the orbit leads the bulge. As the black
hole’s spin increases, the lead becomes a lag. This lead gets
smaller as the spin gets larger. Since the lag becomes alead as
the spin is changed from a = 0.1M to a = 0.2M, there must
be a spin value between ¢ = 0.1M and a = 0.2M for which
the lead angle is zero for the corotating orbit. Our data also
suggest that the lead angle may approach zero as the spin gets
very large. But this suggests that the horizon locks to the orbit
for at most only two spin values, in this map—a set of
measure zero. We do not find any systematic connection
between the geometry and the horizon for these orbits.

Before concluding, let us examine the relative phase of
the tidal field and the horizon’s curvature, Eq. (4.44).
Setting Sy [B = 0 yields

(I+2)(1-1)

Qoo = Oy I(I+1)

(5.3)

We again see Q. # Qy when the field and the response
are aligned (although Q. — Qy as [ gets very large).

The analytical expansions and numerical data indicate
that the Newtonian fluid intuition for the geometry of tidal
coupling simply does not work well for strong-field black
hole binaries, even accounting for the teleological swap of
"lag" and “lead.” Only in the extremes can we make
statements with confidence: When Qy > Q. the tidal
bulge will lag the orbit; when Q) > Qy, the bulge will
lead the orbit. But when Qg and Qy are of similar
magnitude, we cannot make a clean prediction.

The tidal bulge is not locked to the orbit when
dEM/dt = 0, at least using any scheme to define the
lead/lag angle that we have examined.

VI. CONCLUSIONS

In this paper, we have presented a formalism for
computing tidal distortions of Kerr black holes. Using
black hole perturbation theory, our approach is good for
fast-motion, strong-field orbits, and can be applied to a
black hole of any spin parameter. We have also developed
tools for visualizing the distorted horizon by embedding its
2-dimensional surface in a 3-dimensional Euclidean space.
For now, our embeddings are only good for Kerr spin
parameter a/M < \/3/2, the highest value for which the

PHYSICAL REVIEW D 90, 124039 (2014)

entire horizon can be embedded in a globally Euclidean
space. Higher spins require either a piecewise embedding
of an equatorial “belt” in a Euclidean space, and a region
near the “poles” in a Lorentzian space, or else embedding in
a different space altogether.

Although our formalism is good for arbitrary bound
orbits, we have focused on circular and equatorial orbits for
this first analysis. This allowed us to validate this formalism
against existing results in the literature, and to explore
whether there is a simple connection between the tidal
coupling of the hole to the orbit, and the relative geometry
of the orbit and the horizon’s tidal bulge. We find that there
is no such simple connection in general. Perhaps not
surprisingly, strong-field black hole systems are more
complicated than Newtonian fluid bodies.

We plan two followup analyses to extend the work we
have done here. First, we plan to extend the work on
embedding horizons to a/M > \/3/2, the domain for
which we cannot use a globally Euclidean embedding.
Work in progress indicates that the simplest and perhaps
most useful approach is to use the globally hyperbolic
3-space H? [25]. This allows us to treat the entire range of
physical black hole spins, 0 < a/M < 1, using a single
global embedding space. Second, we plan to examine tidal
distortions from generic—inclined and eccentric—Kerr
orbits. The circular equatorial orbits we have studied in
this first paper are stationary, as are the tidal fields and tidal
responses that arise from them. If one examines the system
and the horizon’s response in a frame that corotates with the
orbit, the tide and the horizon will appear static. This will
not be the case for generic orbits. Even when viewed in a
frame that rotates at the orbit’s mean ¢ frequency, the orbit
will be dynamical, and so the horizon’s response will
likewise be dynamical. Similar analyses for Schwarzschild
have already been presented by Vega, Poisson, and Massey
[20]; it will be interesting to compare with the more
complicated and less symmetric Kerr case.

An extension of our analysis may be useful for improv-
ing initial data for numerical relativity simulations of
merging binary black holes. One source of error in such
simulations is that the black holes typically have the wrong
initial geometry—unless the binary is extremely widely
separated, we expect each hole to be distorted by their
companion’s tides. Accounting for this in the initial data
requires matching the near-horizon geometry to the bina-
ry’s spacetime metric; see [43] for an up-to-date discussion
of work to include tidal effects in a binary’s initial data.
Much work has been done on binaries containing tidally
deformed Schwarzschild black holes [44—-46], and efforts
now focus on the more realistic case of binaries containing
spinning black holes [43,47]. With some effort (in order to
get the geometry in a region near the horizon, not just on the
horizon), we believe it should be possible to use this work
as an additional tool for extending the matching procedure
to the realistic orbital geometries of rotating black holes.
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APPENDIX A: DETAILS OF COMPUTING 4

In this appendix, we present details regarding the
operator 0 in the form that we need it for our analysis.

1. The Newman-Penrose tetrad legs

A useful starting point is to write out the Newman-
Penrose tetrad legs 1, n, and m. In much of the literature on
black hole perturbation theory, we use the Kinnersley form
of these tetrad legs in Boyer-Lindquist coordinates:

1
(l”>BL = Z[(rz +a2)7A»Oa a}, (Al)
(n*)gL = i[(r2 +a*),-A,0,d] (A2)
BL = 5% .—A,0, 4],
(mH)g, = S liasin®,0,1,icscd];  (A3)
V2(r +iacos )
(L)g = [~1,Z/A.,0, asin6), (A4)
1
(ny)g = > [-A, =X, 0, aAsin?6), (AS)
(o =
WL \2(r + iacos 6)
X [—iasin®,0,%,i(r* + a*)sinfd).  (A6)

The components of the fourth leg, m, are related to the
components of m by complex conjugation. The notation
(b")g. = (b',b",b%,b?) means “the components of the
4-vector b in Boyer-Lindquist coordinates are represented
by the array on the right-hand side,” and similarly for the
1-form components (b,)g; .

Because our analysis focuses on the Kerr black hole
event horizon, we will find it useful to transform to Kerr
ingoing coordinates (v, ¥, 0,y ). Using Egs. (1.5)—(1.6), we
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transform tetrad components between the two coordinate
systems with the matrix elements

dv_y v _ria  w_a v,
ot o A ro A’ op
or'

5_1. (A7)

All elements which could connect (¢,r,¢) and (v, 7, y)
which are not explicitly listed here are zero; the angle 0 is
the same in the two coordinate systems. The matrix
elements for the inverse transformation are

o _ . o_ (P+a) Oy _ a

ov or A or A’

op or

=l =l (A8)

As noted in the Introduction, r and 7’ are identical; we just
maintain a notational distinction for clarity while trans-
forming between these two different coordinate systems.
With these, it is a simple matter to transform the tetrad
components to their form in Kerr ingoing coordinates:

1
(M) = 5 () + @], A,0,24], (A9)
]
(n")y = 55 [0.-4,0,0], (A10)
1
mH = iasind,0,1,icscb|; All
= e i (A
(L) = [~1,25/A,0, asin?0)], (A12)
1
(M) = == [—A, 0,0, alsin’d], (A13)
2%
(M = —=——
m =
N 2(F + iacos 6)
x [—iasin®,0,%,i[(F')? + a®)sing]. (Al4)

The notation (b*);y = (b*,b", b’, b*) means “the compo-
nents of the 4-vector b in Kerr ingoing coordinates are
represented by the array on the right-hand side,” and
similarly for the 1-form components (b,). In the above
equations, A and X take their usual forms, but with r — r’.
At this point, the notational distinction between 7 and r is no
longer needed, so we drop the prime on r in what follows.

Changing coordinates is not enough to fix various
pathologies associated with the behavior of quantities on
the event horizon. To ensure that quantities we examine are
well behaved there, we next change to the Hawking-Hartle
tetrad. This is done in two steps. First we perform a boost
(cf. Ref. [48], Sec. 2.6), putting
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V- A I (A15) With this, we finally obtain the tetrad elements that we need
T 2w? for this analysis:
2> 1
n' =—n, (Al6) (M) = — [@2,A/2,0,al, (A22)
m’ = m, (A17) () ‘ 1
M)HHIN = 75 . ¢
where we have introduced @w? = r? + a?. This is followed V2(r+iacos )
by a null rotation around 1: iaAsing ia*sin@
X |0,——————,1,icscO — ,
1 I AlS8 2o -
HH — 1> ( ) (A23)
mHH - m/ + E'l/, (Alg)
1
nH = [-2a*w?*sin?0, —4w*
nyy =n' +em’ 4 e’ + cel’, (A20) () = 355 |
+ a*Asin®0,0, —4aw? + 2a’sin?0];  (A24)
with
L L1 .
. iasinf ' (A21) (L) = py— [-A,2%,0, aAsin?0],  (A25)
V2(r — iacos )
|
(m,) . 1 o 1
m =
FHRIN D (r +iacos8)  2(r* + a?)
X [~ia(2w? — A) sin @, —2iaZ sin 0, 2w°%, i(2w* — a®Asin?0) sin 4], (A26)
(M) = - [—4w* + a®(4w? — A)sin0, 2a*Esin?0, 0, a’ Asin*6)]. (A27)
[
In the remainder of this appendix, we will use the Hawking- S, u u
Hartle components in ingoing coordinates, and will drop *= Em (Y, my, =V, 1,,), (A30)
the “HH, IN” subscript. |
- =-—m*(m"V,m, —n*V,,). A31
2. Constructing P 2 ( g 2 (A31)
Here we derive the form of the operator 9, acting at the  This means that
radius of the Kerr event horizon, r = r .. Following Hartle
[15], 8 acting upon a quantity # of spin-weight s is given by wf— lmv (0, m, — i), (A32)
2
= [6—s(a—p)n. A28
= (@=An (A28) Using ingoing coordinates, we find
The operator 6 = m*0,. Evaluating this at r = r [using 2 .
the fact that A =0 there, and that a/(r; +4a°)= (a—p)|,., = (a” - 2Mr) COt? + larzcscﬁ
a/(2Mr ) = Q] we find : V2r,(r, —iacos0)
1
_ 1 - : 2
5= [0p — i(csc O — aQyy sin 0)9,,]. V2(ry. —iacos0)
V2(r, —iacos6) (a® —2Mr,) .
(A29) X Tcot@—f— iacscO|. (A33)

Next consider the Newman-Penrose spin coefficients o and
. With the metric signature we use (— + ++), they are
given by

Finally, we combine Egs. (A29) and (A33) to build .
Assume that # is a function of spin-weight s with an axial
dependence eV
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o = Oy —i(cscO — aQy sin )0, —
1 \/i(r+—iaC089)|:9 ( " %

1

= [89+scot9—|—mcsc«9—amQHsin9

V2(r, —iacosb)
(a®> —2Mr,)
Iy

1
- LS — amQyysin6 — S

—scotl — ,S
(ry —iacos0)

(ry —iacos0)

2-2M
u [(a ry) cotd + iacsc 9] } n
ry

cotd + iacch”n

(a* +r2 = 2Mr, —iar, cos @) cotd

V2(r, —iacos6) |
| -
- LS — amQyy sin6 — >

V2(r, —iacos®) |

1 ) . ias sin @
= LS —amQysin@ —
V2(r, —iacos6) |

1 iacos @51
= 1- LS —amQysind|| 1 —
\/§r+< ) [ " ]<

Ty

In going from the first to the second equality of
Eq. (A34), we used the fact that n « e we also added
and subtracted s cotd inside the square brackets. In going
from the second to the third equality, we recognized that the
first three terms inside the brackets are just the operator L? ;
cf. Eq. (2.50). We also moved the negative scotf term
inside the second set of square brackets. In going from the
third to the fourth equality, we used the fact that
ri+a®>=2Mr,. We then used csc6—cotfcost =
sin® to go from the fourth to the fifth, and finally used
Eq. (2.55) to obtain our final form for this operator. This
last line is identical to Eq. (2.56).

APPENDIX B: VISUALIZING
A DISTORTED HORIZON

Following Hartle [14,15], we visualize distorted horizons
by embedding the two-surface of the horizon on a constant
time surface in a flat three-dimensional space. The embed-
ding is a surface rg(60,y) that has the same Ricci scalar
curvature as the distorted horizon. For unperturbed
Schwarzschild black holes, rg = 2M; for an unperturbed
Kerr hole, rg is a more complicated function that varies
with 0. In the general case, we write

re(0.) = i) (0) + i) (0.). (B1)
In this paper, we focus on cases where the entire horizon
can be embedded in a Euclidean space, which means that
we require a/M < +/3/2. (We briefly discuss considera-
tions for a/M > /3/2 at the end of this appendix.) To
generate the embedding, we define Cartesian coordinates
on the horizon as usual:

(ry —iacos0)

(ry —iacos®)
(ry —ia cosé‘)]”

iacos@

Ty

+ iacscé”n
ry

(iacsc@ —iacosBcotb)|n

> . (A34)
X(0,y) = rg(0,y) sin0cosy, (B2)
Y(0,y) = rg(0,w)sinOsiny, (B3)
Z(0,w) = re(0,y) cos 6. (B4)
We compute the line element
ds* = dX* + dY* + dZ*
= g5, do* + ZQEWdeu/ + g, dw?, (B5)

and then the Ricci scalar corresponding to the embedding
metric ggﬁ to linear order in rl(gl). We require this to equal the

scalar curvature computed using Eq. (2.25), and then read
off the distortion rl(gl)(H, W).

1. Schwarzschild

Thanks to the spherical symmetry of the undistorted
Schwarzschild black hole, results for this limit are quite
simple. The metric on an embedded surface of radius

re =2M + (0. ¢) (B6)
is given by
i (0.9)
ds? = (2M)? [1 + ET] (d6* + sin*0d¢*). (B7)

(Recall that w =¢ for a =0.) It is a straightforward
exercise to compute the scalar curvature associated with
the metric (B7); we find
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1 1 0 0 m? ]
Re=——— 24— (sino2 ) - Te
ETom? [ T Sin6o0 <s1n 89) sinzﬁ} aMm3

(B8)
Let us expand rl(g1> in spherical harmonics:
i (0.) = 2M 07, (0)e ™. (B9)
Im
Using this, Eq. (B8) simplifies further:
1
Re = o [1 + 2 el +2)(0= 1Y (O)e™ .
(B10)

The scalar curvature we compute using black hole
perturbation theory takes the form

Ry = Rg» + ZRS.)Imkn’ (Bl 1)

Imkn

where Rg) ) = 1/2M?. Equating this to Rg, we find

. 2M?R);)
Eimo Y (0)e™? = %:7(1 — 2)5@’1) , (B12)
or
Z M3RH>lmkn (Bl?))
L (142)(1-1)

Equation (B13) is identical (modulo a slight change in
notation) to the embedding found in Ref. [20]; compare

their Eqgs. (4.33) and (4.34). We use (6, ¢) to visualize
distorted Schwarzschild black holes in Sec. III B (dropping
the indices k and n since we only present results for
circular, equatorial orbits in this paper).

2. Kerr

Embedding a distorted Kerr black hole is rather more
complicated. Indeed, embedding an undistorted Kerr black
hole is not trivial: As discussed in Sec. II A, the scalar
curvature Ry of an undistorted Kerr black hole changes
sign near the poles for spins a/M > /3/2. A hole with this
spin cannot be embedded in a global Euclidean space, and
one must instead use a Lorentzian embedding near the
poles [23]. We briefly describe how to embed a tidally
distorted black hole with a/M > \/3/2 at the end of this
appendix, but defer all details to a later paper. For now, we

focus on the comparatively simple case a/M < v/3/2.

PHYSICAL REVIEW D 90, 124039 (2014)

a. Undistorted Kerr

We begin by reviewing embeddings of the undistorted
case. Working in ingoing coordinates, the metric on the
horizon is given by

ds* = g dx* + g, dy?,  with
2 2,2 AM?72 (1 — x2
o tex MR o0) gy
1—x ri +a‘x

We have introduced x = cos 6. Equation (B14) is the metric
on a spheroid of radius

rO(x) = \/r (%) + Z(x)?, (B15)
where
ri(x) =nvf(x). (B16)
_[r [A=(df/dx)?
xX) = nA de, (B17)
with
1—x2
f<x):7l—ﬁ2(1_x2)’ (B18)
n=1/r +a%, (B19)
p=aln. (B20)
Using Egs. (B18)—(B20), we can rewrite Z(x) as
_[*_ HK) :
Z(x) _A [r%r 4 a2(x/)2]3/2 dx’, (BZI)
where
H(x) = [r8 —6a*rix® — 4ar2 x> (1 + x?)
— a8 (1 + 22 + x4)]V2. (B22)

For a/M > /3/2, H(x) = 0 at some value |x| = xg. This
means that H(x) is imaginary for |x| > xg for this spin;
Z is imaginary over this range as well. The horizon can
be embedded in a Euclidean space over the range
—xg < x < xg. For all a, the equator (x = 0) is a circle
of radius 2M. The scalar curvature associated with this
metric is

(14 a*/r2)(1 = 3a*x?/r%)

_R —
(1 ax /‘+)

2
RE_H_r_z
+

(B23)

124039-30



STRONG-FIELD TIDAL DISTORTIONS OF ROTATING ...
b. Distorted Kerr: a/M < /3/2

For this calculation, it will be convenient to use Dirac
notation to describe the dependence on x. We write the
spin-weighted spherical harmonics as a ket,

sYim(x) = |slm), (B24)
and define the inner product
(sk () stm) =22 [ ¥y () (0 ¥in (1)
_ (B25)
These harmonics are normalized so that
Sutun = [ [ vy, V(e
= 5, (skn|slm). (B26)
The 2z prefactor in Eq. (B25) means that
(skm|slm) = &. (B27)

Using this notation, let us now consider the curvature of
a tidally distorted Kerr black hole. Begin with the curvature
from black hole perturbation theory, Eq. (2.25). Translating
into Dirac notation, we have

|R =Im E Clmanlmkn Lok

Imkn

= ImRy .,

6 6 Slmkn>]

(B28)

where |00 S, ) is given by Eq. (2.64).

We now must assume a functional form for the embed-
ding surface. A key issue is what basis functions we should
use to describe the angular dependence of this surface. The
basis functions for the angular sector, 33 S} , , depend on
mode frequency, and so are not useful for describing the
embedding surface. Since spherical harmonics are com-
plete functions on the sphere, we use

(1)

re(x.y) = rg(x) + g’ (x.y), (B29)

where

) () = ’+Z£fmoyfm(x)eiml’/’ (B30)
‘m

and where r%(0) is given by Eq. (B15). This quantity must
be real, so the expansion coefficients must satisfy the
symmetry

Erem = (_l)féfm’ (B31)
where as before overbar denotes complex conjugate. Note
that the index # used in Eq. (B30) is not the same as the
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index [ used in Eq. (B28). It is important to maintain a
distinction between the indices that are used on the
spheroidal and the spherical harmonics.

Using Eqgs. (B29) and (B30), we find that the embedding
surface yields a metric on the horizon given by

ds? = (Gux + o) dx? + 2hy, dxdy + (g, + hy,)dy?,
(B32)
with g,, and g,,, given by Eq. (B14), and

B 2
- (r%r +a2 2)3/2

e oD
X [(H—l—&) rD + (H - 4M?r%)x g

XX

1 —x? Ox
(B33)
H —4M?r2)x ortV)
xy/ — ( r+)x r , (B34)
(r2 + a*x?)3? oy
Mr, (1= x?
hoo_gMr(1=2) ) (B35)

wy
VR + e

The function H = H(x) was introduced in the embedding
of the undistorted Kerr hole, Eq. (B22). By restricting
ourselves to a/M < /3/2, we are guaranteed that H is real
for this analysis.

Computing the embedding curvature from this metric,
we find

Ry =RY + RD, (B36)

where R\ is given by Eq. (B23), and
Zefm [ )|0Zm) + D(x)—|Ofm> imy

= Zefme’m"’ﬂOfm).

‘m

(B37)

We have introduced the operator £ = C(x) + D(x)d/dx
for later notational convenience. The functions C(x) and
D(x) which appear in it are given by

1
C pu—
(x) 2HM?r (P2 + a*x?)'1/?
8 5 2j
. Ccyp;a
X [Z coja¥ +Zﬁ}’ (B38)
j=0 j=0
D(x) = - e +a2x2 mZd a¥,  (B39)

where
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Coo = Zri{f(f + l)HM[ri +4M?(H — 4M2ri)x2] - r1+1 + Zri(rﬁ — 4HM?)x?}, (B40)

coq = 82(¢ + V)H>M3r3x* — r#(6 — 23x% + 9x*)
—2HMPA{16€(¢ + 1)M*x* + 6Mr3x*(4 = 3x%) + ri [l — (4 4+ 5¢(¢ + 1))x?]}, (B41)

con = r5{4[6 + 5¢(¢ + 1)JHMr x* — 12HM?>x*(4 — 9x*) — r%.(6 — 63x* + 57x%)}, (B42)

co3 = ri{4HMr x*[3 + [6 + 5¢(¢ + 1)|x*] —4HM?x*(4 — 27x) — r%(2 — 103x? + 181x* — 24x%)},  (B43)

coa = rAx*{36HM>x* + 2HMr x*[8 + [4 + 5£(£ + 1)]x?] + r§.(104 — 332x? + 67x* + 21x°)}, (B44)
cos = rix*{2HMx®[3 + £(£ + 1)x?] + r.(63 — 355x? 4 56x* + 62x° 4 6x%)}, (B45)

coe = rtx?(21 = 217x% + 6x* 4 60x6 + 18x%), (B46)

coq = r2x*(3 = 71x* — 8x* + 18x5 + 18x%), (B47)

cog = —x*(10 + x* + x* — 6x°); (B43)

cro =2m*Mr3 (2HMr), — Hr — 4H>M?r% x> + 16HM*r x> — 2HM ] x> + 8M>r9 x?), (B49)
c11 = —2Hm>*Mr3 x*[5r% + 4M?(H — 4M?r%)x?], (B50)

c1a = —4m*MrSx*H(6M + 5r,) — 6M(H — 4M*r7)x%], (B51)

c13 = —4m*MrixS[H(8M + 5r,) — 8M(H — 4M*r%)x?], (B52)

cr4 = —2m>Mrix®[H(6M + 5r,) — 6M(H — 4M*r%)x?], (B53)

c1s = —2Hm*Mr x'°; (B54)

do = 2r8x{-2r5.(1 = x?) + HM[r + M(6 — 8x?)]}, (B55)

dy = rSx{—r%(8 = 17x> + 9x*) + 4HM[6M — 2(9IM — r_)x* + IMx*]}, (B56)

dy = =4r4 x{rS (1 — 13x% + 12x*) = 3HM[M — 8Mx* + (6M + r)x*]}, (B57)

dy = r2x3{r8.(89 — 113x% + 24x*) + 4HM2r . x* — M(10 — 9x?)]}, (B58)

dy = 2HMr  x° + rSx3 (75 — 149x% + 53x* + 21x°), (B59)

ds = r* x3(30 — 114x% + 35x* + 43x° + 6x%), (B60)

de = r2x3(5 — 47x% 4+ Tx* + 23x° + 12x%), (B61)

d7 = —x°(8 — x* —x* — 6x). (B62)

The term in C(x) that is proportional to 1/(1 — x?) is written so that C(x) is well behaved in the limit x — +1:

s 2j
lim 3 iliaxz = 128a>m>MO[64M T, — 16a>M3(3r, +2M) — 8a*M>3(r, — 2M) + a®M(5r, + 6M) —a¥].  (B63)

x—=+1 =0

This ensures that this function is well behaved in all of our numerical applications.
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For small spin, the functions C and D become

PHYSICAL REVIEW D 90, 124039 (2014)

)= EHDE=D A+

1)(5x* =2) +2(18x> + m> = 7) (2)2

2M? 16M? M
498x* — 764x> + 168 — 4m?*(5x*> + 6) — £(£ + 1)(51x* — 100x% + 16) [ a \*
_ 5 — +... (B64)
256 M M
S5x(1=x%) (a\?  x(1-x*)(58-67x%) (a\*
Dix) — a a B65
) =—gp <M> + 6402 Mm) (B6S)

The two expressions for the deformed hole’s curvature,
Eqgs. (B28) and (B37), must equal one another. To facilitate
comparing the two express10ns let us introduce a complex
embedding curvature, Rgl In Dirac notation, we write this
quantity

RL)) =€, e El0cm), (B66)
‘m
introducing new coefficients &}, . We require that
ImRY) = RY. (B67)

Refemng to Eq. (B28), we see that we can enforce R](E) =

R( ) by requiring

Ry, =Ry (B68)
As we will now show, Eq. (B68) gives us a simple
expression for the complex embedding coefficients &y, .

Once those coefficients are known, it is straightforward to
extract the embedding coefficients &,,.

Both Rgi and RY) vary with y as e, so we can
examine them m-mode by m-mode. To facilitate this

comparison, we break up the phase function ®,,;,(v,w)
[Eq. (2.16)] as

(I)mkn(v7 l//) = my + 6q)m + 6(pkn’ (B69)
with
59, = —m[Qyv + K(a)],
50, = —(kQy + nQ,)v. (B70)

Recall K(a) is defined in Eq. (1.13).
With all of this in hand, let us now compare the two
curvature expressions for each m:

1 i i
mR%{,)c> = e/%n chmknzl}llnkne 2050 Simkn)
lkn
lnRYD) ZefmS\Ofm> (B71)

|
The sums over [ and # are taken from min(2, |m|) to co; the
sums over k and n are both taken from —oo to co. Multiply
these expressions by e/ and sum over m from —co to oo
to recover our expressions for R](Ei and R;)C

Left multiply both expressmns in Eq. (B71) by (Ogml|.
Define the vector mR as the object with components

RZ = el5‘1>,,, zclmk" lmkn l{s@k" <qu|66Slmkn> (B72)
lkn

Likewise define the embedding matrix ,,E as the object
whose components are
mEqr = (0gm|E|0Lm). (B73)

The function C(x) which appears in the operator £ is an
even function of x, and D(x) [which appears in £ in the
combination D(x)d/dx] is odd. It follows that the only
nonzero elements of ,E_, are those for which g and ¢ are
either both even or both odd.

Finally, define ,,€° as the vector whose components are
€%,,- Requiring <qu|mR§{],)c> = <0qm|le(El’l> yields the
matrix equation

(B74)

- RC. (B75)

Equation (B75) yields the complex embedding coef-
ficients &}, . From this, we must extract the true embed-
ding coefficients €,,, which appear in Eq. (B30). We do
this by considering the symmetries of &, and &,, and
by enforcing Eq. (B67). We have already presented the
symmetry of €4, in Eq. (B31). For &}, , first write
Eq. (B75) in index notation,

(B76)

c -1 c
Eom = ) _mEzgmRG-

q

m

Carefully examining their definitions and the symmetries
of the quantities which go into them, we find that
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—meq’ = (_l)mequv

R = —=(RS), (B77)
SO
& = (Z1)71E,. (B78)
Now enforce Eq. (B67): We require
I e, e™E Y, (x) =D erme™EY,,(x). (BT9)
‘m ‘m

The operator £ acting on the spherical harmonic Y,
yields a real function. With this in mind, and recalling
that the sum must be real, we see that
m # 0,
m = 0.

Epm = —iEG,,
= —Imey,, (B30)
We then assemble rl(al)(x, w) using Eq. (B30).

At least for the circular, equatorial orbits we have studied so
far, we find that both the vector ,,Rj and the matrix ,E .
converge quickly. Consider first convergence of the terms
which contribute to ,,Rg. Strictly speaking, the sum over / in
Eq. (B72) goes to infinity. We find that this sum is dominated
by the term with ¢ = [; other terms are reduced from this peak
term by a factor ~el9”!l, with e ranging from 0 for
Schwarzschild (only terms with ¢ =/ are nonzero in that
case), to about 0.1-0.2 for orbits near the innermost stable
circular orbit for spin a/M = /3/2. We have found that
taking the sum to /., = 15 is sufficient to ensure fractional
accuracy of about 10~ or better in the components mRg for
small spins (a < 0.4M) for all the orbits we have considered;
we take the sums to [, = 20 or [, = 25 to achieve this
accuracy for small radius orbits at spins ¢/ M = 0.7 and v/3/2.

Next consider the components of mkc and ,E them-

selves. Formally, we should treat both mﬁc and ,E as
infinite dimensional objects. However, their contributions
to the tidal distortion fall off quite rapidly as ¢ and ¢
become large. We find that ,,R7 is dominated by the g =
Gpeak = Max(2, [m[) component. Components beyond this

peak fall off as eli=apeal  with € ~ 0.1 across a wide range
of spins. The matrix components ,,E,, are dominated by
those with ¢ = 7, but fall off with a similar power law
form as we move away from the diagonal. We have
found empirically that our results are accurate to about
107? including terms out to g = # = 15 for small spin,
but need to go as high as ¢ =7 =25 for large spin,
strong-field orbits.

c. Distorted Kerr: Considerations for a/M > /3/2

The techniques described above do not work when
a/M > \/3/2. For these spins, H(x) =0 at |x| = xg,
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and is imaginary for |x| > xg. One way to handle this
spin range would be to introduce separate embeddings to
cover the domains |x| < xg and |x| > xg. Special care
must be taken at the boundaries |x| = xg, since factors of
1/H in the embedding curvature RS) introduce singu-

larities there. The basis functions used to expand the

embedding function rg)(é', w) must be chosen so that

these singularities are canceled out, leaving the embed-
ding curvature smooth and well behaved. One could also
simply work in a different embedding space; work in
progress indicates that a 3-dimensional hyperbolic space
H? is particularly useful, since it can handle all black
hole spins [25].

Although straightforward to do in principle, these other
embeddings do not add substantially to the core physics we
wish to present (although, at least for some embeddings,
they do add substantially to the already rather large number
of long equations in this paper). We defer a detailed
analysis of horizon embeddings for a/M > v/3/2 in a
later paper.

APPENDIX C: SPIN-WEIGHTED SPHEROIDAL
HARMONICS TO LINEAR ORDER IN a/M

In Sec. IVA, we derive analytic results for the tidal
distortion to leading order in ¢ = a/M, and to order u’
(where u=+/M/r). As part of that analysis, we need
analytic expressions for the spin-weighted spheroidal
harmonics |, S, = to leading order in g. We also need the
eigenvalue A for s = —2 to the same order. Here we derive
the relevant results for arbitrary spin-weight s. Similar
results for s = —2 can be found in Refs. [49,50]; much of
this approach is laid out (and intermediate steps provided)
in Ref. [12].

The equation governing the spin-weighted spheroidal
harmonics for spin-weight s and black hole spin a is

1 d ds 5 5o
sin9d€<sm6 )—|— [ﬂ—aa)sme

(m + scosf)?

+2ac(m sin’@

—scosf) — Sim(0) = 0.

(C1)

The parameter A appearing here is one form of the
eigenvalue for this equation; another common form is
E =2+ 2amw — a*>w* + s(s +1); still another (which
appears in at least one of Teukolsky’s original papers
[9])is A = € — s(s + 1). We write both 4 and the harmonic
as expansions in aw:
A=+

(aw)ly, (€2)

$Sin(0) = Y 1(0) + (aw) Y}, (6). (C3)
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This could be taken to higher order [for example, Ref. [49]
does so to O(a’w?) for s = —2], but linear order is enough
for our purposes.

Begin by defining the operator

d (. d (m + s cos 6)?
— <sm¢9%> + {s—,— .

1
Lo sin 0 do sin%0

(C4)

Equation (C1) can then be decomposed order by order,
becoming

(Lo + 20)sYim =0, (C5)

(Lo + 20)sS), = (2scos@ —2m — A)Y;,.  (C6)
Equation (C5) tells us that

do=(U=-s)I+s+1). (C7)

Multiply Eq. (C6) by 27,Y,,, sin @ and integrate both sides
with respect to € from O to z. Integrating by parts, using
Egs. (B27) and (C5) and the fact that

sm

2 [ .1,,(0)cos6,Y,,(6) sin0d6 — — . (C8
7 [ ¥inl0)cos0,,,(0) e (©®
we find
§2
M ==-2m|l +——|. 9
! m{ RTr 1)} (©9)
To compute (S} , put
SSIIm = CfrmsYl'm' (ClO)
I'=min(|s|,|m])

Inserting this into Eq. (C6), multiplying by 2z,Y,, sin@
and integrating, we find

o 4ns /ﬂ .
Clm = RO, Y rm(6) cos6,Y,,,(0) sin 0dO
(I'#1), (C11)
=0 (I'=1) (C12)

Using the fact that this integral can be expressed using

Clebsch-Gordan coefficients, we see that cf'm 1S nonzero
only for I’ = [+ 1. We find
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+1 _ _ S
Cim I+ 1)

X\/(l+s+1)(l—s+1)(l+m+1)(l—m+l)

(21+3)(21+1) '

(C13)

s U= mi-m

Cim 12\/ oitnai-n - 9
For s = -2, these reproduce the values given in

Appendix A of Ref. [49].

APPENDIX D: GLOSSARY OF
NOTATION CHANGES

Previous work by one of the present authors and various
collaborators (e.g., Ref. [35]) has used notation for various
quantities related to the Teukolsky equation and its sol-
utions which differs from that used by Fujita and Tagoshi
and their collaborators [28,29,39]. We have recently
switched our core numerical engine to one that is based
on the Fujita-Tagoshi method, and as such have found it to
be much more convenient to follow their conventions in
our work.

Begin by examining how Egs. (2.36)—(2.39) appear in
the previous notation:

— Bz,

Ripo(r = 14) (D1)

in

B o
Rgna)(r N OO) B?rlrllta) 3 twr + l:uu e~lor , (DZ)
R, (r = ry) = Djye?” + Dy, ,A%eP", (D3)
Rf;,(r = o) = Dfj ,rPe™” (D4)

[These are Egs. 3.15(a)-3.15(d) in Ref. [35].] As discussed
in Sec. IIB, we use these homogeneous solutions to
assemble a Green’s function, and then define a general
solution

lew( ) Z}-;In(u( ) lmw(r> +Zlmw( )R}_)Ina)( ) (DS)
where
1 (}" )Tlmw(r/)
H _ lma) /
Zlmu)( ) W A(r/)z dr ’ (D6)
) lem )Tlmw( ) ’
ze (r) W/ A dr, (D7)

where W is the Wronskian associated with R}} R ' We

Imw*
then define
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Lo = Zimo (1 = ), (D8)
Zinw = Zig (1 = 14). (D9)

These amplitudes define the fluxes of energy and angular
momentum into the black hole’s event horizon and carried
to infinity. Unfortunately, they have the rather annoying
property that their connection to these fluxes is “back-
wards”: Z}fnw encodes information about the fluxes at
infinity, and Zj, = encodes fluxes on the horizon.
Although the labels defined by Eqgs. (D8) and (D9) follow
logically from their connection to the homogeneous sol-
utions R}fnw and R}, . they connect rather illogically to the
fluxes that they ultimately encode.

To switch to the notation that is used in Refs. [28,29,39],
we rename various functions and coefficients. For the fields

that are regular on the horizon, we put

RH ~— R (D10)
Bin = Bl (D11)
Biy, = B, (D12)
Bjh, = Bl (D13)
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and for fields that are regular at infinity,

Riw = R (D14)
Dy = Clne» (D15)
Dis = Clner (D16)
Dipy = Choor (D17)

The general solution which follows from this is our
Eq. (2.30), with functions Z* (r) and Z;> (r) defined

in Egs. (2.31) and (2.32). As described in Sec. II B, we then
define

Zinr = Zime (1 = 74), (D18)
Ze =7 (r— ). (D19)

This definition reverses the labels that were introduced in
Egs. (D8) and (D9), so that fluxes on the horizon are
encoded by ZH " and those to infinity by zp - Itis also in

Imw’

accord with the notation used in Refs. [28,29,39].
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