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our model, an example x is classified positive (resp., negative) if all possible assignments for the
unspecified attributes result in a positive (resp., negative) classification. Otherwise the classificatoin
given to x is "?" (for unknown). Given an example x in which some attributes are unspecified, the oracle
UAV-MQ responds with the classification of x. Given a hypothesis h, the oracle UAV-EQ returns an
example x (that could have unspecified attributes) for which h(x) is incorrect. We show that any class
learnable in the exact model using the MQ and EQ oracles is also learnable in the UAV model using the
MQ and UAV-EQ oracles as long as the counterexamples provided by the UAV-EQ oracle have a
logarithmic number of unspecified attributes. We also show that any class learnable in the exact model
using the MQ and EQ oracles is also learnable in the UAV model using the UAV-MQ and UAV-EQ oracles as
well as an oracle to evaluate a given boolean formula on an example with unspecified attributes. (For
some hypothesis classes such as decision trees and unate formulas the evaluation can be done in
polynomial time without an oracle.) We also study the learnability of a universal class of decision trees
under the UAV model and of DNF formulas under a representation-dependent variation of the UAV model.


https://openscholarship.wustl.edu/cse_research/476?utm_source=openscholarship.wustl.edu%2Fcse_research%2F476&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/476?utm_source=openscholarship.wustl.edu%2Fcse_research%2F476&utm_medium=PDF&utm_campaign=PDFCoverPages

Learning from Examples with Unspecified
Attribute Values

Sally A. Goldman, Stephen S. Kwek and
Stephen D. Scott

WUCS-98-28

December 1998

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130



Learning From Examples With Unspecified
Attribute Values*

Sally A. Goldman'
Dept. of Computer Science
Washington University
St. Louis, MO 63130-4899
sg@cs.wustl.edu

Stephen S. Kwek!
School of Electrical Engineering and Computer Science
Washington State University
Pullman, WA 99164-1035
kwek@eecs.wsu.edu

Stephen D. Scott!
Dept. of Computer Science and Engineering
University of Nebraska
Lincoln, NE 68588-0115
sscott@cse.unl.edu

WUCS-98-28

December 1998

Abstract

We introduce the VAV learning model in which some of the attributes
in the examples are unspecified. In our model, an example z is classified
positive (resp., negative) if all possible assignments for the unspecified
attributes result in a positive (resp., negative) classification. Otherwise
the classification given to z is *?” (for unknown). Given an example z in
which some attributes are unspecified, the oracle UAV-MQ responds with
the classification of z. Given a hypothesis %, the oracle UAV-EQ returns

*An earlier version appears in the Tenth Annual ACM Conferenceon Computational Learn-
ing Theory, 1997
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an example = (that could have unspecified attributes) for which k(x) is
incorrect.

We show that any class learnable in the exact model using the MQ and
EQ oracies is also learnable in the UAV model using the MQ and UAV-EQ
oracles as long as the counterexamples provided by the UAV-EQ oracle
have a logarithmic number of unspecified attributes. We also show that
any class learnable in the exact model using the MQ and EQ oracles is
also learnable in the UAV model using the UAV.-MQ and UAV-EQ oracles
as well as an oracle to evaluate a given boolean formula on an example
with unspecified attributes. (For some hypothesis classes such as decision
trees and unate formulas the evaluation can be done in polynomial time
without an oracle.) We also study the learnability of a universal class
of decision trees under the UAV model and of DNF formulas under a
representation-dependent variation of the WAV model.

Keywords: Unspecified or missing attributes, exact learning, member-
ship queries, equivalence queries, DNF formulas, decision trees

1 INTRODUCTION

Most theoretical work on learning boolean functions assumes that the examples
are drawn from {0,1}" and each example is classified as positive {“+") or neg-
ative {“—") by the unknown target concept f. However, consider the situation
of trying to predict whether or not an individual will default on a loan. There
are a large number of attributes that one might consider (some about the indi-
vidual and some about the individual’s employer). Using standard approaches
to learning boolean functions, a learning algorithm could consider each loan ap-
plication as an example from {0, 1}" where n is the number of attributes under
consideration for loan applications. Let’s assume that if we had correct data for
all of the attributes, then such an algorithm could make a very good prediction
as to whether or not the individual will default on the loan. However, in practice
some atfributes’ values will not be provided (or specified). For example, some
states may prohihit the release of certain credit information. The learner is to
take an example with some unspecified attributes and reply that from the given
information either (1) the individual is extremely likely to default on the loan,
(2) the individual is extremely likely not to default on the loan, or (3) there is
not enough information available to make a decision.

There are three key aspects in this scenario. First, if all attribute values
were known then the learner could make perfect predictions after learning the
target concept. Second, in any given example provided to the learner, some
of the attribute values are likely to be unspecified. Finally, the learner’s goal
is to make a correct prediction if the values for the provided attributes are
sufficient to do so, or otherwise indicate that insufficient information has been
provided. Along with the scenario described above, one could imagine situations



in medical diagnosis in which these aspects occur. Another such setting comes
from feature extraction for iimage processing. Suppose the learner is given the
task of predicting whether a given image is a face. The atiributes could be
provided by the output of feature extractors which sometimes are unable to
determine whether or not a given feature is present.

In this paper we introduce a variant of Angluin’s exact learning model [3]
in which some of the attribute values are left unspecified. When first defining
the PAC model, Valiant [43] also suggested a variation in which some attribute
values are unspecified but he did not study this variation in detail (see Section 3).
In our new model, the examples are drawn from {0, 1, *}™ where “+” denotes
unspecified. Given a standard boolean function f and an example 2 € {0, L, *}",
the classification of z given by f can naturally be viewed as either being positive
{(meaning that f is true regardless of the values for the unspecified attributes),
negative (meaning that f is false regardless of the values for the unspecified
attributes), or unknown (meaning that f could be true or faise depending on
the values of the unspecified attributes). Thus in our model the classification
of an example is drawn from {+, —,?} where “?” is used to denote the value
of unknown. The goal of our learner is to exactly learn an unknown ternary
function f over the domain {0,1,+}". Since there are unspecified attribute
values, we refer to this model as the UAV Ezact Learning model.

In this model an equivalence query, denoted by UAV-EQ, takes as input a
hypothesis h and returns an example 2z € {0, 1, *}™ (that could have any number
of unspecified attributes) for which A(z) is different from the correct classifica-
tion for . A corresponding model of UAV PAC Learning can be naturally
defined. Namely, the learner is provided with labeled (from {+, —, 7}) examples
of f, drawn randomly according to some unknown target distribution D over
{0,1,%}™. The learner is also given as input ¢ and § such that 0 < ¢, < 1, and
an upper bound & on {f]. The learner’s goal is to output, with probability at
least 1 — &, a hypothesis & € C,, that has probability at most ¢ of disagreeing
with f on a randomly drawn example from 2. In both the exact UAV and PAC
UAV models, membership queries can be added. In a UAV membership query,
denoted by UAV-MQ, the learner gives the membership oracle an example z
from {0, 1, }™ and is given the value of f(z) from {+, —, 7}. We use MQ to de-
note the standard membership oracle that requires that the example z € {0,1}"
(and hence the output is from {+,—}), and EQ to denote the standaid equiv-
alence oracle that always returns a counterexample @ from {0, 1}*. Hence, the
UAV-MQ oracle is a generalization of the standard MQ oracle in which some of
the attributes can be unspecified. Since, for some concept classes, an NP-hard
problem must be solved by the UAV-MQ oracle, we also explore when a concept
class is learnable in the UAV model using the UAV-EQ oracle and the standard
membership {MQ) oracle.

We prove that any concept class that is learnable in the exact model using
the MQ and EQ oracles is UAV exacily learnable using the MQ and UAV-EQ
oracles as long as the counterexamples provided by UAV-EQ have O{logn)
missing attributes where n is the number of attributes. As a corollary to this
result, we prove that any concept class that is learnable in the exact model



using the MQ and EQ oracles is AV exactly learnable using the UAV-MQ
and UAV-EQ oracles as well as an oracle to evaluate a given boolean formula
on an example with unspecified atiributes. For some hypothesis classes such
as decision trees and unate formulas (a superset of read-once formulas), this
“evaluation oracle” is not needed. Also, any monotone class that is exactly
learnable using just an EQ oracle is exactly learnable in the UAV model using
only the UAV-EQ oracle. It is also straightforward to show that any class
learnable in the UAV model with only the UAV-EQ oracle is learnable in the
standard model using only an EQ oracle. We also show that there is a class of
universal decision trees that can be efficiently learned in the UAV model using
only a UAV-MQ oracle (no evaluation oracle is needed regardless of how many
attributes are unspecified), yet cannot be efficiently learned in the standard
exact learning model using only an MQ) oracle. Likewise, known results can be
applied to show that read-once formulas are UAV exactly learnable using only
a UAV-MQ oracle yet are not exactly learnable in standard model using only
an MQ oracle.

For a known DNF formula f, the problem of determining the classification of
an example z € {0,1,*}" (with Q(n°) unknown attributes for some constant c)
1s NP-complete since it involves solving a satisfiability and a non-satisfiability
problem. For the concept class of DNF formulas, we study a representation-
dependent variation of the UAV model (which we call the RUAVmodel) in which
the teacher (and learner) can efficiently classify any example from {0, 1,}"
with respect to a given DNF formula. In this variation, the classification of an
example z € {0, 1, +}" for the teacher’s representation of the target function
f is defined as follows. If any term in f is satisfied by the known attributes
in @ then f(z) = +. If every term in f is known not to be satisfied by the
known attributes from # then f{z) = —. Otherwise, f{z) = 7. We study the
relationship between the TAV and RUAV models, and then prove that the class
of DNF formulas is learnable under the RUAV model using RUAV-MQ and
RUAV-EQ oracles (no evaluation oracle is needed).

2 OUR LEARNING MODEL

We first briefly review the exact learning model introduced by Angluin [3]. The
learner’s goal is to exactly learn (using various types of queries) how an unknown
(boolean) target function f, taken from some known concept class C, classifies
(from {4, ~}) all instances from the domain. Many different types of queries
have been studied. We now define the most common queries.

Membership Query The learner supplies an example 2 € {0, 1}"™ and is told
Hz).

Equivalence Query the learner presents a candidate function & and either is
told that 2 = f (in which case learning is complete), or else is given a
counterezample z € {+, —} for which h{z) # f(z).



Subset Query The learner presents a candidate function h and is either told
that for all # € {0,1}", if h{z) = “+” then f(z) = “+” or otherwise is
given an example z € {0, 1}* for which h(z) = “+” and f(z)} = “-".

Superset Query The learner presents a candidate function h and is either told
that for all z € {0,1}", if h(z) = “~” then f(z} = “~" or otherwise is
given an example 2 & {0, 1}" for which h(2) = “—7 and f() = “+”.

As suggested by Valiant [43], we consider when the target concept is defined
over n boolean variables z1,...,2, with an instance space X, = {0,1,*}",
where “+” indicates that the corresponding variable is unspecified. An example
z € {0,1}" is called total. We say that a total example y is a completion of
example ¢ € {0,1,+}" if each specified attribute in 2 has the same value in
y. Let f be a boolean function defined over z1,...,3,, and let z € {0,1,*}".
We define f(z) = + if and only if f(y) is positive for all vectors y that are
completions of z. Similarly, we define f{z) = — if and only if f(y) is negative
for all vectors i that are completions of 2. Otherwise, we say that f(a) = 7 (for
unknown). Note that we use z; to denote both the ith boolean variable and
the ith bit of the example z. Thus for an example =z € {0, 1, }*, z; gives the
value for variable z;. We will always use 1, ..., 2, as the variables, so for an
example y € {0, 1, *}", y; gives the value for variable z;. We denote the example
obtained from = by setting all the unspecified bits to & € {0,1} by 2. and
the example obtained by flipping the ith bit of =, z;, to b € {0, 1, +#} by zy,4s.

For target concept f and x € {0,1,*}"?, UAV-MQ(z) retwrns the value of
f(z) from {+,—,7}. In response to UAV-EQ(4), the learner either is told that
h = f or else is given a counterexample # (along with its classification) for which
h{z) £ f(z). Note that the target function is a ternary (versus the standard
binary) function and all three values are distinct. So, for example, if A(z) = +
and f(z) = 7 then z could serve as a counterexample for A. When given a
boolean formula k& and a total example z € {0,1}", in polynomial time one
can evaluate ii(z). However, when given a boolean formula 2 from hypothesis
class H and an example = € {0, 1, %}", the problem of evaluating h(z) is NP-
complete for many choices for . Thus we introduce an evaluation oracle, where
on input » and =z € {0,1,*}?, EV(h,z) outputs the value of A{z). There are
some important cases when the EV oracle is not needed since a polynomial
time algorithm can replace it. First, for a projection closed class' if we can
efficiently determine whether two different representations of a concept class are
functionaliy equivalent then an EV oracle is not needed. Such equivalence tests
exist for monotone DNT, read-once branching programs [36], Horn-sentences,
free-branching programs [14, 21], read-once boolean formulas [28] and read-
twice DNF [34]. Also, if the number of unspecified attributes is O{logn), then
evaluation can be done in polynomial time by simply considering all completions
of z. Likewise, when h is a unate formula, then it is casily seen that the
evaluation (for any example from {0, 1, x}") can be done in polynomial time.

LA concept class C is projection closed if for any f & C, the function obtained by fixing a
variablein ftoOorlis f' €€ for {f'| < |f]-



Finally, for the class of decision trees itself we can efficiently implement the
EV oracle by computing the classification of all nodes in the order given by a
post-order traversal of the decision tree.

Notice that for a target function f, the MQ oracle on input ® returns the
value of EV(f, 2). For applications such as the medical diagnosis example, one
view is that an expert serves as the UAV-MQ) oracle and thus the computational
issues are not a problem. However, when studying the learnability of boolean
formulas under the UAV model, it is desirable that the UAV-MQ oracle runs
in polynomial time. Thus we introduce variants of the UAV membership and
equivalence oracles. The UAV-EQ)og oracle takes as input a hypothesis & and
returns a counterexample in which there are at most O(logn) unspecified a-
tributes. Similarly, the UAV-MQyog oracle takes as input any example ¢ with
({log n) unspecified attributes and outputs the classification (+,—, or 7) of =.

As in the standard exact learning model, the learner’s goal is to exactly
identify the target concept using membership and equivalence queries (i.e. for
all z € {0,1,}", h(z) = f(z)). Since there are unspecified attribute values,
we call this model the UAV Ezact Learning model. We also study variations
in which only a UAV-EQ oracle or only a UAV-MQ oracle is allowed. In some
of our results, the unspecified attributes of the examples given to the UAV-MQ
oracle are a subset of the atiributes that were unspecified in the recent coun-
terexample that came from the UAV-EQ oracle. In these cases, as long as we
use the UAV-EQ)og oracle (and thus have O(logn) unspecified attributes), then
we can replace the UAV-MQ oracle by a UAV-MQ),; oracle, and hence using
Observation 2, by a standard MQ oracle. Thus for these cases, we obtain pos-
itive tesults in the UAV model by just using a UAV-EQjoe oracle and an MQ
oracle. Finally, a corresponding model of AV PAC Learning can be naturally
defined.

3 RELATED WORK

Within the exact learning model a number of interesting polynomial time algo-
rithms have been presented to learn target classes such as decision trees [19], de-
terministic finite automata [2], Horn sentences [4], read-once formulas [5, 18, 16],
read-twice DNT formulas [1], k-term DNF formulas [13, 20], etc. For all of these
classes it is kmown (using information-theoretic arguments), that neither mem-
bership queries nor equivalence queries alone suffice.

Although different from the goals of our work, there has been work on learn-
ing when the examples may be mislabeled [3, 32, 41, 29] and when there is
attribute noise [40, 23, 33]. There has also been some work in which the an-
swers to membership queries are noisy or missing [37, 7, 42, 6, 12]. Although we
can get a “?” response from our membership oracle, this response is not adver-
sarially generafed to model an inconclusive outcome, but rather is structurally
defined by the target concept and indicates that there is insufficient information
to determine the classification of the provided example.

A learning model that has very similar motivations to the AV model is



the model of RFA (restricted focus of attention) learnability {9, 10]. The k-RFA
model is a variant of the PAC model in which for each example only k attributes
(of the n attributes), as selected by the learner, are specified. Thus, uniike the
UAYV model in which the unspecified attributes are adversarially selected, in the
k-RFA model the leaner can select which attributes are specified. Another key
difference is in the criteria required of the learner. In the A-RFA model the
requirements for successful learning are exactly as in the PAC model. Namely,
the learner is given a random example @ € {0, 1}* and asked to properly classify
2 with high probability. To explore the differences between these two models, we
consider the task of medical diagnosis which has been suggested as an example
application for both models. In the k-RFA model the view is that for the
training data, the learner can select which test to run and hence which data is
available. However, since the training data is likely to be medical records from
past patients, any data not available (even if a test could have been run) cannot
be obtained at a later date. Also, there are some attributes such as those related
to family history that may just not be available. The UAV model captures this
by having an adversary choose which attributes are not specified. Another key
difference between the two models is that in the RFA model the examples to
be classified have all attributes specified. However, in medical diagnosis (like
many other scenarios), some data for the patient being diagnosed may just
not be available. For example, some information about family history may be
unavailable, and maybe due to the patient’s condition some test(s) could not
be run. Thus we feel it is important for algorithms in our model to classify
examples that have unspecified attributes. This requirement led us to have a
three-valued (versus binary) output.

In the different “learning to reason” framework, Khardon and Roth [31]
investigate the construction of a knowledge base for representing “the world”,
i.e. some boolean function f. This knowledge base is then used to deduce {i.e.
reason)} if f logically implies @ where o is a propositional query capturing the
situation at hand. They consider various interpretations of applying a hoolean
function f to a partial instance x:

(1) Universal: f(z) = + if all completions of z are classified as “+” by f,
otherwise f(z) = —.

(2) Existential: f(z) = + if there exists a completion 2’ of z such that f(a’) =
+, otherwise f(z) = —.

(3) Abbreviated: f classifies # by treating the “+”s as Os and then classifying
the total instance obiained.

Notice that the universal and existential interpretations are the same as treat-
ing the classification “?” in the UAV model as “—” and “+”, respectively. The
membership and equivalence query oracles under these two interpretations are
clearly less informative than their UAV counterparts. The universal interpre-
tation was introduced earlier when Valiant [43] first defined the PAC model.



Clearly, if the target concept is monotone, then both the universal and abbrevi-
ated interpretations are equivalent. Using this observation, Valiant constructs
an efficient PAC learning algorithm, with the aid of a membership query oracle,
for learning monotone DNF under the universal interpretation.

Some work that has similar motivations is the p-concepts model of Kearns
and Schapire [30]. In the p-concepts model (when applied to the boolean do-
main), the learner is given a total example from {0, 1}", yet there is some prob-
abilistic process (or possibly something that appears probabilistic due to the
learner being unaware of some important attributes) that determines whether
the output is positive or negative. In our setting we assume that the learner
knows which attributes it would like to gather, but cannot obtain values for all
such attributes. Other key distinctions are that our target concept is ternary ver-
sus binary and deterministic versus probabilistic, i.e. given an example ¢, f(z)
always has the same value drawn from {+, —, 7} in the UAV model, whereas in
the p-concepts model # can sometimes have a classification of “+7 and some-
times have a classification of “—".

In other related work, Irazier, Goldman, Mishra, and Pitt [22] introduce
a learning model that captures the idea that teachers may have gaps in their
knowledge. They consider learning from a teacher who labels each example as
“3P “P or “?" in such a way that knowledge of the concept class and all the
positive and negative examples are not sufficient to determine the labeling of
any example labeled with “?”. Their goal is to PAC-learn the ternary labeling
presented by such a consistently ignorant teacher. Similar to their model, we
are learning a ternary function. However, in their model all attribute values are
known (i.e. the examples come from {0,1}"}. It is easily shown that under the
domain {0, 1,*}", the “?’s allowed by our model are placed in such a way to
meet the definition of the teacher being consistently ignorant. Namely, no “?’s
value could be determined from the positive examples, negative examples, and
knowledge of the concept class. Another key difference between the two models
is that instead of having the “?”s placed adversarially (as in the consistently
ignorant teacher model), in our UAV mode] the “?”s are defined based on the
target concept®. Thus in the UAV model, the complexity of the ternary target
function has the same complexity as that of the defining boolean function.

There has been some empirical work studying the task of learning from
incomplete data {8, 35, 15]. With the goal of giving a theoretical explanation
for the observed empirical phenomena, Schuurmans and Greiner [38, 39] studied
the problem of learning accurate default concepts to be used when working with
incomplete data. Given an example with unspecified attribute values, they call
an example z € {0,1,+}"” ambiguous if the classification cannot be determined
(i.e. using our terminology the classification of z Is unknown). Their goal is to
find a good way to compute a default classifier (which can have nonmonotonic
behavior) for making a prediction of + or — for the ambiguous examples. In
other words, unlike our UAV model, there are no “?” responses for either the
target concept or the hypotheses. Also, instead of an adversary choosing which

2 Although the “#”s in the examples are adversarially placed.



attributes are unspecified, in their model a total example is drawn from some
fixed distribution and then some attribute values become unspecified according
to some probability distribution. They investigate, under various conditions,
whether the strategies [8, 35, 15] that are used in practice converge to some
optimum hypothesis in the limit and the sample complexities required to achieve
a certain PAC-like learning criterion.

Finally, there have been two oracles studied that are similar to the UAV-MQ
oracle: the constrained instance oracle [26] and the projective equivalence or-
acle [27]. We use CIQ to denole a consirained instance query, and PEQ to
denote a projective equivalence query. Let a (which can be viewed as partial
assignment or an example in the UAV model) be drawn from {0, 1, *}*, and for
the target boolean formula f, let f; be the projection defined by a. That is, f,
is the function defined by f when the variables assigned in a are replaced by a
constant. Note that

+ if f, is a tautology
UAV-MQ(a) = ¢ — if f, is a contradiction
?  otherwise

The constrained instance query is defined as follows where £ € {—,+}:
CIQ(a,£) returns “yes” if and only if there is an assignment 2 that is a com-
pletion of @ for which f(z) = £. Observe that UAV-MQ(a} = + if and only if
CIQ(a, =) = “no” and CIQ(a,+) = “yes.” Similarly, UAV-MQ(a) = — if and
only if CIQ(a, —) = “yes” and CIQ(a,+) = “no.” Finally, UAV-MQ(a) = 7 if
and only if CIQ(a, ~) = “yes” and CIQ(a,+) = “yes.” Thus these two queries
are essentially equivalent. The projective equivalence query is defined as follows.
For a partial assignment ¢ and a boolean formula f', PEQ(a, f’) replies “yes”
if and only if f, = f’. Similar to the above, it is easily shown that the special
case of a projective equivalence oracle in which f' is either the constant frue or
false is essentially equivalent to the UAV membership oracle.

It is known that read-once formulas are exactly learnable using only con-
strained instance queries [26] or using these restricted projective equivalence
queries [27]. Thus read-once formulas are exactly learnable in the UAV model
using only the UAV-MQ oracle. Furthermore, it is known [5] that a polynomial
number of calls to the MQ oracle is not sufficient. This demonstrates (as one
would expect) that the UAV-MQ oracle is more powerful than the MQ) oracle.

Bshouty, Cleve, Kannan and Tamon [17] show that DNF formulas can be
learned by a randomized algorithm in expected polynomial time with equiva-
lence queries and the aid of an NP oracle. Using this result, they also show that
DNF formulas can be learned using subset and superset queries. The hypothe-
sis class of their algorithms is the class of depth-3 A-V-A formulas. An obvious
question to ask is whether the UAV-MQ oracle is powerful enough to simulate
the NP oracle and EQ oracle (or the superset and subset oracles) needed by
the aigorithm of Bshouty et. al. If so, then it would immediately follow that
the class of DNF formulas is learnable by a randomized algorithm in expected
polynomial time using a UAV-MQ oracle alone. However, achieving either of
these two simulation results does not seem possible. It is easily shown that a a



UAV-MQ oracle can simulate subset and superset query oracles where the hy-
potheses are conjunctions and disjunctions of literals respectively. For example,
if a subset query is made with the hypothesis £3 Afa A -+ - ALy for literals £; then
this can be simulated with the UAV-MQ oracle by setting each of the % literals
used in the hypothesis to be true and setfing the remaining variables to “+¥*. If
the UAV-MQ oracles returns “4” then the answer to the subset query is “yes”.
If the UAV-MQ oracle returns “” then return z._,¢ as a negative counterex-
ample. Finally, if the UAV-MQ oracle responds with “?” then a FormNegEx
(a variation of FormPosEx from Figure 1 with “+” and “” exchanged) can
be used to construct a counterexample. However, we believe that the UAV-MQ
oracle cannot simulate subset and superset query oracles with the hypothesis
class of depth-3 A-V-A formulas as would be needed to use the algorithm of
Bshouty et. al to learn DNF formulas with only a UAV-MQ oracle.

Receutly, Birkendorf, Klasner, Kuhlman and Simon [11] investigated the
UAV model further and answered a number of open problems posted in an
carlier (conference) version of this paper [24]. They presented lower bound
results on the number of UAV-EQs and UAV-MQs required to learn a concept
class iIn terms of its Vapnik Chervonenkis dimension. Further, they extended
Angluin’s [3] sunflower lemma (which is useful in proving lower bound results in
the exact model) to the UAV setting. In doing so, they establish exponentially
large lower bounds on the number of UAV-MQs needed to learn monotone DNF,
read-once DNF, O(n)-DNF, read-twice DNF and 2-decision lists. In contrast
to these negative results, they also present efficient algorithms using UAV-MQs
for learning read-once DNF, constant-term DNF and 1-decision lists. They also
determine how restrictions on the number of unspecified attributes affects the
strength of the UAV oracles. They show that a UAV-EQ oracle that returns
counterexamples with at most » — 1 unspecified attributes is strictly stronger
than one that is allowed to return counterexamples with up to » unspecified
attributes. They also establish a similar result for the UAV-MQ oracle. Besides
these hierarchical results, they also compare the power among the standard and

UAV oracles.

4 RELATIONSHIPS WITH THE STANDARD
EXACT LEARNING MODEL

We begin with an observation that directly follows from the fact that within the
UAV model the examples given as input to the UAV-MQ oracle can be selected
from {0,1,*}" > {0,1}".

Observation 1 Let C be a concept class that is evactly learnable using the MQ
oracle alone. Then C is UAV exactly learnable using only the UAV-MQ oracle.

Next we consider when a UAV-MQ),4 oracle can be simulated with a stan-
dard membership query oracle. Let  be an example given fo the UAV-MQyq,
oracle (so z has at most clogs n unspecified attributes for some constant e).

10



Since there are at most n® completions of &, the value of UAV-MQ)og(2) can be
computed from making n° calls to the MQ oracle and using polynomial time.
Thus we get the following observation.

Observation 2 The UAV-MQiog oracle can be simulated in polynomial time
using the standard MQ oracle.

While standard MQ oracle can be trivially simulated in our model, equiva-
lence queries are more complicated since the UAV-EQ) oracle returns an example
z € {0,1, %)™ versus from {0, 1}". We show the somewhat surprising resuli that
the standard EQ oracle can be simulated by a UAV-EQy, oracle and a standard
MQ oracle.

Theorem 3 Let C be a concept class that is exactly learnable in polynomial time
using the MQ and EQ oracles. Then C is UAV exactly learnable in polynomial
time using the MQ and UAV-EQyoy oracles.

Proof: Let A be the exact learning algorithm for €, and let f € C be the
target function. We construct an algorithm A’ to learn C in the UAV model.
Suppose that A makes an equivalence query with hypothesis A. Then A’ uses
its UAV-EQ)qg oracle in the following manner. If UAV-EQuog(h) responds “yes”
then A’ can output A and halt. Suppose instead that counterexample z €
{0,1,*}" is returned. In each of the following three cases we show how to
generate an example y € {0, 1}" such that A(y) # f(y). Then y is given to A
as a counterexample. Note that in all of the cases, the unspecified attributes in
any example given to the UAV-MQ oracle are a subset of those unspecified in
the counterexample z. Since 2 had O(log r) unspecified attributes, all examples
given to the membership oracle have O(logn) unspecified attributes. Thus by
Observation 2 we can, in polynomial time, simulate the calls to the UAV-MQ
oracle with an MQ oracle.

Case 1: h(x) = —. One possibility is that f(z) = +. Let y = z.0. By the
definition of a positive example in the UAV model, we know that f(y) = +.
By the definition of a negative example in the UAV model, we know that
h{y) = —. Thus y € {0,1}" is a counterexample for A.

The other possibility is that f{z) = 7. By definition, we know there is
some completion y of  for which f(y) = +. We use membership queries
to find such a y. The basic idea is to go through the unspecified attributes
setting the next attribute to I {or to 0) and checking with the UAV-MQ
oracle if this example is positive. If not, since f(z) = 7 at least one of these
examples has a “?” classification, and thus we can continue with this new
example (which has one less unspecified attribute). Figure 1 describes our
procedure FormPosEx that receives an x € {0, 1, x}™ for which A(z) = —
and f(z) =7, and returns a total example y € {0, 1}" for which A(y) = —
and f(y) = +.

11



FormPosEx(x)

1 Let =; be the first unspecified attribute in 2
2 YV IZ 2,00

3 W= By

4 if UAV-MQ(v) = ? then

5 FormPosEx(v)

6 else if UAV-MQ(v) = + then
7 return vs_,o to A

8 else (so UAV-MQ(v) = —)

9 if UAV-MQ{w) = + then
10 return w._qg to A

11 else (so UAV-MQ(w) = 7)
12 FormPosEx(w)

Figure 1: The algorithm FormPosEx which takes as input an example 2 €
{0, 1,4} for which f(z) = 7 and A(z) = —, and returns a total example y €
{0,1}" for which A(y) = — and f(y) = +.

Case 2: h(z) = +. This is handled using a symmetric argument to Case 1.
Notice that FormPosEx (and its proof of correctness given below) can
be easily modifled to create the procedure FormNegEx.

Case 3: h(z) = 7. One possibility is that f(z) = +. Here we can apply a
variation of FormNegEx in which we use the evaluation oracle, EV(h, z),
instead of UAV-MQ(z). (Recall that since there are O(logn) unspecified
attributes in 2, the computation of EV(h, 2) can be done in polynomial
time.) The other possibility is that f(2} = — in which we apply a variation
of FormPosEx where we again use EV(h, z) instead of UAV-MQ(z).

We now prove that FormPosEx is correct. Let x be the example given as
input to FormPosEx (for which we maintain the invariant that f(z) = 7). Let
z; be the first unspecified attribute in z, let v = 2,0, and let w = 25,,1.
Notice that if FormPPosEx ever reaches the last unspecified attribute, then
clearly f(v) and f(w) must be “+” or “—” since v,w € {0, 1}*. Furthermore,
since UAV-MQ(z)} = ? then either f(v) = + or f(w) = +. Thus eventually
FormPosEx returns an example y € {0,1}" to A. We now argue that y is a
counterexample. First, since h(z) = — and y is a completion of z, A(y) = —.
Finally, it follows directly from FormPosEx that UAV-MQ(y) = f(y) = +.
The last thing we must argue is that when we reach the final else clause (so
f(v) = —), then f{w) # —. That is, if f(w) # +, then f(w) = 7. This is crucial,
since it is important that the example for the recursive call to FormPosEx has
a classification of “7”.

12



We now prove the following slightly more general result. For z € {0, 1, «}"
for which f(z) = ? and for which 2; is unspecified, as we did in Figure 1 define
U = Lo aild w = 2,41, If flv) # 7, we show that f(v) # f(w). For the
sake of contradiction, assume that f(w) = f(v} = —. Consider the total vectors
w = w.o and v = v.,0. Note that f(w') = f(»') = —. Also, the only
difference between w’ and o is that for the zth attribute w{ = 1 and v} = 0,
vet we are given that f(2) = 7. Thus there must be some completion z of z for
which f(z) = +. Suppose that the ith attribute z; = 0. Then since f(v) = —,
it follows that f(z) = —. Likewise, suppose that the ith attribute z; = 1. Then
since f(w) = —, it follows that f(z} = —. This contradicts the existence of such
a z, completing the proof that if f(v) # 7, then f(v) # f(w).

Thus the algorithm FormPosEx will, after at most 2n calls to the UAV-MQ
oracle (simulated by a polynomial number of calls to the MQ oracle) and poly-
nomial time, return a counterexample y to A as desired. Thus both the mem-
bership and equivalence queries requested by A can be simulated by A’ in poly-
nomial time. (N

As a corollary to this theorem we consider when the UAV-EQ oracle (ver-
sus the UAV-EQog oracle) is used. The only change required is that now the
UAV-MQ oracle cannot necessarily be efficiently simulated by the MQ oracle).
Also, now the EV oracle is needed since we may not be able to efficiently evaluate
the learner’s hypothesis on the examples from {0, 1, #}™.

Corollary 4 Let C be o concept class that is evactly lewrnable in polynomial
time using the MQ and EQ oracles. Then C is UAV ezactly learnable in poly-
nomial time using the UAV-MQ, UAV-EQ, and EV oracles.

While in general cur result requires the use of the EV oracle, it is easily
seen that a polynomial time algorithm can simulate the EV oracle for a unate
class. More specifically, consider the query EV(f, z) where z € {0,1,*}". Let
21 be the completion of  obtained by setting the unnegated attributes to 1 and
the negated attributes to 0. Likewise, let zs be the completion of z obtained
by setting the negated attributes to 0 and the unnegated atiributes to 1. If
fz1) = f(zs) then output f(z;) as the classification for f(z). Otherwise,
f(z) = 7. Thus ouly two examples from {0, 1}" need to be classified. So for
any learning algorithm that uses a unate class for the hypothesis class, the BV
oracle is not needed.

Corollary 5 Let C be exactly learnable in polynomial time with a unate hypoth-
ests class using the EQ and MQ oracles. Then C is UAV exactly learnable in
polynomial time using the UAV-EQ and UAV-MQ oracles.

As discussed earlier, for the class of decision trees we can efficiently imple-
ment the EV oracle by computing the classification of all nodes in the order
given by a post-order traversal of the decision tree. Thus, if the hypothesis class
is the class of decision trees, the EV oracle is not needed.

13



Corollary 6 Let C be evactly learnable in polynomial time with a hypothesis
class of dectsion trees using the EQ and MQ oracles. Then C is UAV ezactly
learnable in polynomial time using the UAV-EQ and UAV-MQ oracles.

Finally, for a projection closed class for whichwe can efficiently determine
whether two different representations of a concept class are functionally equiva-
lent then an EV oracle is not needed. Such equivalence tests exist for monotone
DNF, read-once branching programs [36], Horn-sentences, free-branching pro-
grams [14, 21], read-once boolean formulas [28] and read-twice DNF [34].

Corollary 7 Let C be exactly learnable in polynomial time using the EQ and
MQ oracles with a hypothesis cluss H where H is projection closed and for which
there is a polynomial time algorithm to determine if hy € H and he € H are
logically equivalent. Then C is UAV exactly learnable in polynomial time using
the UAV-EQ and UAV-MQ oracles.

Notice that the simulation used in Theorem 3 requires the use of membership
queries by A’ even when .4 uses only equivalence queries. One natural question
is: When can a standard exact learning algorithm that uses only equivalence
queries be simulated by a UAV algorithm that uses only equivalence queries?
We now partly answer that question by arguing that FormPosEx (respectively,
FormNegEx) need not use membership queries to simulate the equivalence
queries when the concept class is monotone. In particular, given an example @
for which f(x) = 7 (or h{z) = 7}, FormPosEx (respectively, FormNegEx)
and the variations used in Case 3 need just return z..,; (respectively, @..q).

Corollary 8 Let C be exactly learnable in polynomial time with o monotone
hypothesis class using only the EQ orecle. Then C is UAV exactly learnable in
polynomial time using only the UAV-EQ oracle.

All of the above results address the issue of converting an algorithm that
works 1n the standard model to one that works in the UAY model. Since the
example @ returned from a standard equivalence query is a total example for
which f(z) # h(z), = can also serve as a response for the UAV equivalence
query. Thus we get the following result.

Observation 9 [f concept class C is exactly learnable in polynomial time in the
UAV model using only the UAV-EQ oracle, then C is exactly learnable in the
standard model in polynomial time using only the EQ oracle.

5 LEARNING ORDERED DECISION TREES
WITH A UAV-MQ ORACLE

Combining our results from the last section with Bshouty’s decision tree algo-
rithm [19), we can learn the class of decision trees in the UAV model using the
UAV-MQ, UAV-EQ, and EV oracles. As discussed in Section 2, for the class of
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Tree BuildTree(proj)
1 if UAV-MQ(proj » - - -} # 7 then return tree(UAV-MQ(proj * - - -¥), nil, nil)
2 Tp = tree(UAV-MQ{proj0 - - - 0), nil, nil)
3 i=i-1
4  while i > |proj]
5 if IsParent(proj, i, T1) = true
6 Ty = tree(z;, Tz, BuildTree(proj 0---0 1))
i~lprojl—1
T i:=2—1
8 return Ty

Figure 2: The algorithm BuildTree for learning an arbitrary boolean function
f in its canonical ordered decision tree representation Ty. The input proj gives
a partial assignment for the first |proj| attributes. In the initial call proj is
empty. Note that the projection sent recursively in Line 6 uses proj to assign
L1y -3 Zprog|, 288igNS 0 60 |proji41, - - -, Ti—1, and assigns z; = 1.

decision trees we can implement the EV oracle efficiently. However, since the
hypothesis class in Bshouty’s algorithm is not a decision tree, the EV oracle
must still be provided.

In this section we consider a class 7 of “ordered” decision trees defined with
respect to a linear ordering of the variables, say 1 < -+ < &,, such that the
variable in each internal node is greater than the variables in its ancestors in
this ordering. We give an algorithm to learn 7 in the UAV model using only
the UJAV-MQ oracle. Since our hypothesis class is also an ordered decision
tree, we do not need an EV oracle because we can efficiently evaluate f{z) for
2 decision tree T} and example x € {0,1,%}". Since the class of singletons
can be represented by trees in 7 with O(n) nodes and the class of singletons
cannot be learned with standard membership queries [3], 7 cannol be learned
using standard membership queries. This provides a second example (along
with read-once formulas, see Section 3) demonstrating that the UAV-MQ oracle
is more powerful than standard MQ) oracle.

We denote the size of a tree T by |T|. We also adopt the convention that
we branch to the left subtree if the variable associated with the current node is
“0”. Otherwise we branch to the right. Notice that any boolean concept has a
representation in 7 although the size of the representation may be exponential
in the size of its DNF representation. We now prove that the representation of
any boolean function f using 7" with the smallest number of nodes is unique.

Lemma 10 The representalion of any boolean function f using T with the
smallest number of nodes is unique,

Proof: The proof is by induction on the number of variables n. Clearly, it is
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true when n = 1. For the sake of contradiction, suppose f has two minimum
representations 77 and T5. If the variables at the roots of both trees are the
same, then by our inductive hypothesis, both left and right subtrees of both
trees are identical. Without loss of generality, suppose variable z; at the root
of 11 is smaller than that of T5. Then @; must not be relevant to f meaning
that T} could be replaced by either of its subtrees, contradicting the minimality
assumption for 7. O
‘We now prove the main result of this section.

Theorem 11 The cluss of ordered decision trees is efficiently ewactly learnable
in the UAV model using only the UAV-MQ oracle. Specifically, for an arbitrary
boolean function f, let T} be its canonical (minimal) representation as an ordered
decision tree. Then Ty can be ezactly identified using O(n?|Ty|) time and calls
to the UAV-MQ oracle.

Proof: We present an algorithm BuildTree (see Figure 2) for learning T}.
The basic idea is to first determine the subtree rooted at a node along the path
from the root to the leftmost leaf, then determine the label of its parent, and
recursively determine its right sibling. We can then iteratively continue this
process moving up the tree. More specifically, BuildTree takes as input a
partial assignment proj and builds the canonical ordered decision tree for for,;
(the projection of f defined by proj). The assignment proj assigns a 0 or 1 for
attributes 2y,...,s; for some j with the remaining attributes left unspecified.
(Initially, all attributes are unspecified.} We denote proj by a length j bit
string (i.e. proj € {0,1}/) where only the specified attributes are included.
We let projb-- - b denote the example obtained by padding proj by repeating
be {0,1,%} n—j times.

The procedure BuildTree is called recursively to construct the canonical
ordered decision tree for f,,o;. The terminating condition (see Line 1) is reached
when UAV-MQ(proj # ---+) # 7, in which case we return a leaf with label
flproj # - - %) = UAV-MQ(prog * - - -+). The notation tree(xz;, T, Tr) denotes
the tree where the root is labeled z;, the left subfree is Ty, and the right
subtree is Tp. A leaf with label £ € {+,—} is denoted as tree(d, nil, nel). If
the terminating condition deoes not hold, then the root of the tree is an internal
node. Define Pr, as the path from the tree’s root to its leftmost leaf. Clearly, the
subtree rooted at the last node of Pp is simply a leaf with label f(proj0---0).
In Line 2 we construct such a leaf (as a single-node subtree) and call it 7. Next
we determine the atiribute x; associated with the parent of T}, (see Figure 3).
Let #p be the atiribute associated with the root of Ty,.  Observe that the
index ¢ for the attribute z; must be between 1 and ¥ — 1. We begin by setting
i = i — 1 and testing (in Line 5) whether z; is the attribute for the parent of
Ty, by calling the function IsParent(proj, i, Tp). If we find z; is not the parent,
then we decrement i and repeat the test. If the test succeeds for 7, we then
construct (in Line 6) the subtree rooted at the parent which consists of a root
labeled z;, 17 as its left subtree, and the right subtree T that we recursively
Iearn by calling BuildTree with the projection proj’ = projQ---01. (So proj’

i—j—1
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rootof T
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Iast "right” tum on path

v /-—- from root to T L
A .

proj

¥

current
subtree

Figure 3: This figure shows the configuration we have during the main step of
BuildTree when Ty, (and |proj|) are known and it must determine x; and then
recursively construct Tg.

assigns zy,...,%; according to proj, assigns 0 to the attributes z;4q,..., 21
and finally assigns 1 for #;.) We then let this newly constructed tree be our
next 77 and iteratively repeat the process of finding its parent and a new T}
until we have constructed the entire tree.

We now describe how IsParent{proj, i, Ty} (see Figure 4) tests whether z;
is the parent of 77, in the subtree T7,,,.. Let i be the index for the attribute
at the root of Ty, (see Figure 3). Notice that the way BuildTree calls IsPar-
ent ensures that the attributes between z; and 2y have failed the test (and
thus cannot appear as the label in the parent of Ty). For leaf £ of Ty, let a;
be the partial assignment for z;,..., 2, which defines the path to £ from the
root of T4 . First consider the case where x; is not the parent of 7p. Then
changing #; from “¥” to “1” does not change its classification. Thus the partial
assignment proj0---01%---%ap, must be classified consistently with the label

fjel i
of £. Conversely, if'? z; 1s the parent of Ty then 17, is different from Tx. That
is there is a leaf £ in 77, such that the classification of the partial assignment
proj0.--01 .. -%a; is inconsistent with the labeling of £.
imjm1l i—i

We now use induction on n to prove the stated upperbound for the number
of calls to the UAV-MQ oracle (and hence the time complexity). Clearly, the
bound holds for n = 1. For n > 1, the subroutine IsParent makes at most
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|7 | queries and is called by BuildTree at most n times. The total number of
queries needed in Line 6 to recursively construct the right subtrees of the nodes
along the path Py, is at most (n— 1)* times the total size of these right subtrees,
which is bounded by |T|. Together with the two initial queries at Lines 1 and
2, the number of queries made is 2+ O(n|T}|) + O((n — 1)3|T}]) = O(n?[1}]) as
desired.

O

6 LEARNING DNF FORMULAS UNDER THE
RUAV MODEL

For many concept classes, the problem of determining the classification of an
example @ € {0,1,*}" for a known target function f is NP-complete since it
involves solving a satisfiability and a non-satisfiability problem. As we have
noted, for unate formulas and decision trees this evaluation problem can be
efficiently solved. On the other hand, for the concept class of DNF formulas,
SAT can trivially be reduced to our evaluation problem and thus the evaluation
problem is NP-complete. For the concept class of DNF formulas, we introduce a
representation-dependent variation of the UAV model in which the learner and
teacher can efficiently classify any example from {0, 1, #}". Let f be the target
DNF formula. For a moment suppose a computationally unbounded teacher
builds a DNF formula f/ = f that has one term for each (of the possibly
exponentially many) prime implicants® of f. The teacher could now compute
Fflz) for z € {0,1,+}" as follows. If any term in f’ is satisfied by the known
attributes in z, then f{z) = +. If every term in f is known not to be satisfied
by the known attributes in =, then f(z) = —. Otherwise f(z) = 7.

Using the above observation as a motivation, we now define the following
representation-dependent version of the UAV model (which we call the RUAV
model) in which a computationally bounded agent can evaluate the target for-
mula f on example = € {0, 1, *}™. The idea is to approximate the above proce-
dure directly using f. Namely, in the RUAV model, if any term in f is satisfied
by the known attributes in z, then f(z) = +. If every term in f is known
not to be satisfied by the known atiributes in z, then f(z) = —. Otherwise
f(z) = 7. Note that it is possible for f(z) = 7 in the RUAV model when
f(2) = 4 in the UAV model. For example, suppose f = 2325 + Tyzs. So
f' = zizs 4+ Tizy + zezs. Now consider the example z = #11. Notice that
both @125 and Tyza individually could be satisfied or not satisfied. Thus in the
RUAV model, f(#11) = 7. However, the prime implicant za23 is satisfied by
#11 and thus in the UAV model, f(*11) = +. Since the classification of some
examples depend on the teacher’s representation of the target concept, we refer
to this as a representation-dependent model.

It is common for a human expert to (maybe subconsciously) encode a scheme

3 A prime implicant of a boolean formula f is a conjunction ¢ (not containing contradictory
literals) such that ¢ implies f, but no proper subset of ¢ implies f.
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Boolean IsParent(proj,i,Ty)

i’ = index for the attribute at the root of 77, (n+ 1 if T} is a leaf)

for each leaf £ in 77,
Let a; be the partial assignment for 2;,..., 2, that defines the path to £in T}
if UAV-MQ(proj 0-.-0 1x---xap) # label of £ then return true

i—|proj|—1 i'wi-1

[

5 return false

Figure 4: The Algorithm IsParent which tests whether w; is the parent of T}
in the subtree Ty, .. The assignment a, assigns all variables from zy,... 2,
on the path from the root of Ty, to the leafl £ according to the path, and the rest
are left unspecified.

for classifying examples in {0, 1, +}" as a collection of rules (i.e. a DNF formuia).
However, as we have noted, evaluating DNF formulas on {0, I, #}"* examples is
NP-complete. To circumvent this problem, a typical human expert response is
likely to evaluate the formula as described above in the definition of the RUAV
model. Thus, the RUAV model captures the situation where we are trying to
acquire knowledge from such an expert.

Although the class of universal decision trees 7 considered in the previous
section can be learned in the UAV model using membership queries only, the size
of the representation can be exponential in the size of the DNF representation.
We now show that DNF formulas are learnable in the RUAV model.

Theorem 12 The class of DNF boolean formulas can be ezactly learned in the
RUAV model using O(n®m) time, O(n®*m) calls to the RUAV-MQ oracle, and
at most m calls to the RUAV-EQ oracle where m is the number of terms in the
larget concept.

Proof: Our algorithm LearnDNF (see Figure 5) maintains a hypothesis A
for the target concept f (where initially A = false) with the invariant that the
terms of i are a subset of those of f. Thus we do not receive any negative
counterexamples and we never incorrectly predict positive (i.e. if h(2) = + then
f(z) = +). LearnDNTF processes a counterexample = as follows:

Case 1: Suppose f(z) = +. Then we know that there is at least one term which
2 satisfies but is not present in h. We use a subroutine ExtractTerm(z)
to construct ¢ and replace h by h V.

Case 2: Suppose f(z) = 7. Since we never incorrectly predict positive, A{z) =
—. Thus some term £ in f is missing from h where ¢(z) = 7. If f(z.q0) =
+, the instance x,,o satisfies f but not h. Thus, as in Case 1, we construct
t by calling the subroutine ExtractTerm (s.0). Now suppose f(z:50) =
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DNF LearnDNT

h := false
while RUAV-EQ(h) £ “yes” do
Let z be the counterexample provided
if f(2) =+ then h = hV ExtractTerm(z)
else if f(w.o0) = + then h = hV ExtractTerm(z.0)
else
@t := PositiveCompletion(z)
h := h v ExtractTerm(zt)
return i

O 00 ~1 S O W G2 DD

Figure 5: The algorithm LearnDNF that learns the class of DNF formulas
in the RUAV model using membership and equivalence queries. The model is
defined in such a way that no evaluation oracle is needed.

Term ExtractTerm(z)

1 t:=tlrue

2 fori=ndownto 1

3 if RUAV-MQ(#;,5.) = + then © := 54,54
4 else if 2; = 1 then t .=t A a;

5 else f .=t AT

6 returnt

Figure 6: The algorithm ExtractTerm that takes a positive example = and
constructs a term ¢ in f — h.

—. Then we use PositiveCompletion(z} to construct a positive example
y that is a completion of z. We then call ExtractTerm(y) to construct
t.

Given an example 2 for which f(z) = +, the procedure ExtractTerm (see
Figure 6) determines a term ¢ in f — h for which t(z) = +. It achieves this
goal by flipping as many attributes in 2 to * as possible without making the
example non-positive. The remaining bits then specify {. We now argue that
ExtractTerm is correct. If f(zy,5.) = + then there still exists some term
in f that is satisfied by @;,. and hence we can replace z by z,, .. Now if
Ff(2z,o4) = — then depending on the value of z;, either x; or Z; must appear
in all the terms in f that are satisfied by z. Thus after all attributes have been
considered, there is only one term in f that satisfies 2. Otherwise some non-*
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Instance PositiveCompletion(z)

1 Y= Teso

2 if RUAV-MQ(y) = + then return y
3 fori=ndowntol

4 if ¢; = # then

5 Y= Yyimr=

6 if RUAV-MQ(y) = ? then

7 ¥ =Yyl

8 Y= Yuso

9 goto 2

Figure 7: The algorithm PositiveCompletion that takes an example ¢ for
which f(2) = 7 and f(#.~0) = — and constructs a positive example y that is a
completion of z.

bit in z would have been flipped to “+”.

It remains to show that given a “?” instance x where f(x.q) = —, the
algorithm PositiveCompletion (see Figure 7} constructs a positive instance y
that is a completion of z. Since @ is a “7” instance but A{z) = —, we know there
is at least one term in f — h not falsified by 2. Denote the set of such terms by
T'. Let P be the set of positive literals from 7" that are unspecified in z. Since
flz«s0) = =, we know that each term in 7" has at least one positive literal in P.
The idea here is to find all the positive literals of one term in 7" and then derive
a positive counterexample by setting these literals to 1 and the “+” bits to 0.
PositiveCompletion begins with y = z,¢ (and since PositiveCompletion
was called we know that f(y) = —). Next, the unspecified bits of z, now 0 in
¥, are flipped back to “+” one at a time starting from @, until we find a “?”
example y. This will eventually occur when we reach the variable z; where

1= max_(min index of the positive literals in ¢).
term teT!

After this, PositiveCompletion flips y; back to 1 and all the “*” bits to 0. Let
je denote the value of ¢ when we exit the for loop (via the goto in Line 9) for
the £th time and let £; be the set of literals in P — {®;,,...z;,} that are also in
t. Note that if all the positive literals ¢ are in {z;,,...,2;,} then the label of y
created after the fth execution of the for loop will be positive, and thus we will
return ¥ in Line 2. Otherwise, for every term in 7" at least one positive literal
is missing from {#;,,...,%;}. In this case,

jer1 = max  min g
Jet term teT! €L,

and hence we will reach a “? example and go to Line 2.
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Finally, since PositiveCompletion and ExtractTerm make O{n?) and
O(n) membership queries respectively, we have the desired result.

7 CONCLUSION

In this paper, we introduced a variant of Angluin’s [3] exact learning model
where some of the attributes in the examples are unspecified. While we gave
some initial results for this model, many interesting questions have been raised.

An interesting direction is to see if the class of DNF formulas is efficiently
learnable in the UAV model using UAV-MQ and UAV-EQ oracles as well as
an EV oracle. An easier question in this direction is to see if the class of DNF
formulas with constant monotone dimension is learnable in the UAV model.
While we can learn general decision trees in the UAV model {see Corollary 4),
an EV oracle is needed since the hypothesis class is not a decision tree. Can
general decision trees be properly learned in the UAV model, thus removing the
need for an EV oracle?

Another direction would be to look at a variation of the UAV model in which
there is a cost for obtaining the value of an initially unspecified attribute. There
has been some research in this direction (such as the work of Greiner, Grove
and Roth [25]). By allowing the cost to possibly be infinite this could model
the situation in which some unspecified attributes could be obtained (at some
given cost), yet the values of some unspecified attributes are just not available.
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