3,970 research outputs found

    The Dynamic Evolution of Solar Wind Streams Following Interchange Reconnection

    Full text link
    Interchange reconnection is thought to play an important role in determining the dynamics and material composition of the slow solar wind that originates from near coronal hole boundaries. To explore the implications of this process we simulate the dynamic evolution of a solar wind stream along a newly-opened magnetic flux tube. The initial condition is composed of a piecewise continuous dynamic equilibrium in which the regions above and below the reconnection site are extracted from steady-state solutions along open and closed field lines. The initial discontinuity at the reconnection site is highly unstable and evolves as a Riemann problem, decomposing into an outward-propagating shock and inward-propagating rarefaction that eventually develop into a classic N-wave configuration. This configuration ultimately propagates into the heliosphere as a coherent structure and the entire system eventually settles to a quasi-steady wind solution. In addition to simulating the fluid evolution we also calculate the time-dependent non-equilibrium ionization of oxygen in real time in order to construct in situ diagnostics of the conditions near the reconnection site. This idealized description of the plasma dynamics along a newly-opened magnetic field line provides a baseline for predicting and interpreting the implications of interchange reconnection for the slow solar wind. Notably, the density and velocity within the expanding N-wave are generally enhanced over the ambient wind, as is the O7+/O6+ ionization ratio, which exhibits a discontinuity across the reconnection site that is transported by the flow and arrives later than the propagating N-wave

    A Near-half-century Simulation of the Solar Corona

    Get PDF
    We present an overview of results from a magnetofrictional model of the entire solar corona over a period of 47 yr. The simulation self-consistently reproduces decades of solar phenomena, varying in duration between rapid eruptions and the long-term solar cycles, from an input of observed active regions emerging at the photosphere. We have developed a geometric approach to use magnetic helicity to identify and localize the frequent eruptions that occur in the simulation. This method allows us to match our results to extreme-ultraviolet observations of transient events. We have analyzed the evolving magnetic topology by computing the squashing factor and segmenting the corona into discrete magnetic domains bounded by the Separatrix-Web. The simulations show a more dynamic structure to the Separatrix-Web than is predicted by potential field models, which may explain solar wind observations

    Recent Development and Results with the MERLIN Tracking Code

    Get PDF
    MERLIN is a high performance accelerator simulation code which is used for modelling the collimation system at the LHC. It is written in extensible object-oriented C++ so new physics processes can be easily added. In this article we present recent developments needed for the Hi-Lumi LHC and future high energy colliders including FCC, such as hollow electron lenses and composite materials. We also give an overview of recent simulation work, validation against LHC data from run 1 and 2, and loss maps for Hi-Lumi LHC

    Predicting In-Hospital Mortality of ICU Patients: The PhysioNet/Computing in Cardiology Challenge 2012

    Get PDF
    Acuity scores, such as APACHE, SAPS, MPM, and SOFA, are widely used to account for population differ ences in studies aiming to compare how medications, care guidelines, surgery, and other interventions impact mortality in Intensive Care Unit (ICU) patients. By contrast, the focus of the PhysioNet/CinC Challenge 2012 is to develop methods for patient-specific prediction of in-hospital mortality. The data used for the challenge consisted of 5 general descriptors and 36 time series (measurements of vital signs and laboratory results) from the first 48 hours of the first available ICU stay of 12,000 adult patients from the MIMIC II database. The challenge was organized as two events: event 1 measured performance of a binary classifier, and event 2 measured performance of a risk estimator. The score of event 1 was the lower of sensitivity and positive predictive value. The score for event 2 was a range-normalized Hosmer-Lemeshow statistic. A baseline algorithm (using SAPS-1) obtained event 1 and 2 scores of 0.3125 and 68.58 respectively. Most participants submitted entries that outperformed the baseline algorithm. The top final scores for events 1 and 2 were 0.5353 and 17.88 respectively.National Institute for Biomedical Imaging and Bioengineering (U.S.)National Institute of General Medical Sciences (U.S.) (NIH cooperative agreement U01-EB-008577)National Institute of General Medical Sciences (U.S.) (NIH grant R01-EB-001659

    Core competencies for pain management: results of an interprofessional consensus summit.

    Get PDF
    ObjectiveThe objective of this project was to develop core competencies in pain assessment and management for prelicensure health professional education. Such core pain competencies common to all prelicensure health professionals have not been previously reported.MethodsAn interprofessional executive committee led a consensus-building process to develop the core competencies. An in-depth literature review was conducted followed by engagement of an interprofessional Competency Advisory Committee to critique competencies through an iterative process. A 2-day summit was held so that consensus could be reached.ResultsThe consensus-derived competencies were categorized within four domains: multidimensional nature of pain, pain assessment and measurement, management of pain, and context of pain management. These domains address the fundamental concepts and complexity of pain; how pain is observed and assessed; collaborative approaches to treatment options; and application of competencies across the life span in the context of various settings, populations, and care team models. A set of values and guiding principles are embedded within each domain.ConclusionsThese competencies can serve as a foundation for developing, defining, and revising curricula and as a resource for the creation of learning activities across health professions designed to advance care that effectively responds to pain
    • …
    corecore