6,741 research outputs found

    Venous Air Embolism Leading to Cardiac Arrest in an Infant with Cyanotic Congenital Heart Disease

    Get PDF
    Gas emboli, including venous and arterial, are a rare but important complication of pediatric cardiac surgery. They have the potential to have devastating consequences and require prompt recognition and treatment. We present a case of gas embolism occurring in the immediate postoperative period in an infant with cyanotic congenital heart disease after palliative cardiac surgery resulting in cardiopulmonary arrest. The embolism was diagnosed by visualization of air within the vessel creating an airlock and occluding pulmonary blood flow

    Pippi - painless parsing, post-processing and plotting of posterior and likelihood samples

    Full text link
    Interpreting samples from likelihood or posterior probability density functions is rarely as straightforward as it seems it should be. Producing publication-quality graphics of these distributions is often similarly painful. In this short note I describe pippi, a simple, publicly-available package for parsing and post-processing such samples, as well as generating high-quality PDF graphics of the results. Pippi is easily and extensively configurable and customisable, both in its options for parsing and post-processing samples, and in the visual aspects of the figures it produces. I illustrate some of these using an existing supersymmetric global fit, performed in the context of a gamma-ray search for dark matter. Pippi can be downloaded and followed at http://github.com/patscott/pippi .Comment: 4 pages, 1 figure. v3: Updated for pippi 2.0. New features include hdf5 support, out-of-core processing, inline post-processing with arbitrary Python code in the input file, and observable-specific data cuts. Pippi can be downloaded from http://github.com/patscott/pipp

    Atmospheric circulation of hot Jupiters: insensitivity to initial conditions

    Full text link
    The ongoing characterization of hot Jupiters has motivated a variety of circulation models of their atmospheres. Such models must be integrated starting from an assumed initial state, which is typically taken to be a wind-free, rest state. Here, we investigate the sensitivity of hot-Jupiter atmospheric circulation models to initial conditions. We consider two classes of models--shallow-water models, which have proven successful at illuminating the dynamical mechanisms at play on these planets, and full three-dimensional models similar to those being explored in the literature. Models are initialized with zonal jets, and we explore a variety of different initial jet profiles. We demonstrate that, in both classes of models, the final, equilibrated state is independent of initial condition--as long as frictional drag near the bottom of the domain and/or interaction with a specified planetary interior are included so that the atmosphere can adjust angular momentum over time relative to the interior. When such mechanisms are included, otherwise identical models initialized with vastly different initial conditions all converge to the same statistical steady state. In some cases, the models exhibit modest time variability; this variability results in random fluctuations about the statistical steady state, but we emphasize that, even in these cases, the statistical steady state itself does not depend on initial conditions. Although the outcome of hot-Jupiter circulation models depend on details of the radiative forcing and frictional drag, aspects of which remain uncertain, we conclude that the specification of initial conditions is not a source of uncertainty, at least over the parameter range explored in most current models.Comment: Revised version; accepted and published. 16 pages, 16 figure

    Statement of the Third International Exercise-Associated Hyponatremia Consensus Development Conference, Carlsbad, California, 2015

    Get PDF
    The third International Exercise-Associated Hyponatremia (EAH) Consensus Development Conference convened in Carlsbad, California in February 2015 with a panel of 17 international experts. The delegates represented 4 countries and 9 medical and scientific sub-specialties pertaining to athletic training, exercise physiology, sports medicine, water/sodium metabolism, and body fluid homeostasis. The primary goal of the panel was to review the existing data on EAH and update the 2008 Consensus Statement.1 This document serves to replace the second International EAH Consensus Development Conference Statement and launch an educational campaign designed to address the morbidity and mortality associated with a preventable and treatable fluid imbalance. The following statement is a summary of the data synthesized by the 2015 EAH Consensus Panel and represents an evolution of the most current knowledge on EAH. This document will summarize the most current information on the prevalence, etiology, diagnosis, treatment and prevention of EAH for medical personnel, athletes, athletic trainers, and the greater public. The EAH Consensus Panel strove to clearly articulate what we agreed upon, did not agree upon, and did not know, including minority viewpoints that were supported by clinical experience and experimental data. Further updates will be necessary to both: (1) remain current with our understanding and (2) critically assess the effectiveness of our present recommendations. Suggestions for future research and educational strategies to reduce the incidence and prevalence of EAH are provided at the end of the document as well as areas of controversy that remain in this topic. [excerpt

    Understanding the nature of the optically faint radio sources and their connection to the submillimeter population

    Full text link
    We present a sample of 43 submillimeter sources detected (at >3 sigma), drawn from our program to follow-up optically faint radio sources with SCUBA. These sources already have associated radio and in many cases optical identifications, and many are also detected at 450 microns. We compare these with 12 submillimeter sources drawn from the literature, which were discovered in blank field mapping campaigns, but also have radio detections. We then use this total sample (55 sources) to study and model the evolution of dusty galaxies. A correlation is observed in the sub-mm/radio color-magnitude diagram, which can be modeled by strong luminosity evolution. The selection effects of the radio/optical pre-selection technique are determined from the models, and a corrected redshift distribution is constrained using a range of model assumptions. The temperature/redshift effects on the 450 microns detected subset of our sample are studied in relation to the models, and prospects for improved measurements in the shorter sub-mm wavelength windows (450 microns and 350 microns) are explored.Comment: to appear in ApJ, 19 pages, 9 figure

    Submillimeter Observations of the Ultraluminous BAL Quasar APM 08279+5255

    Get PDF
    With an inferred bolometric luminosity of 5\times10^{15}{\rm \lsun}, the recently identified z=3.87, broad absorption line quasar APM 08279+5255 is apparently the most luminous object currently known. As half of its prodigious emission occurs in the infrared, APM 08279+5255 also represents the most extreme example of an Ultraluminous Infrared Galaxy. Here, we present new submillimeter observations of this phenomenal object; while indicating that a vast quantity of dust is present, these data prove to be incompatible with current models of emission mechanisms and reprocessing in ultraluminous systems. The influence of gravitational lensing upon these models is considered and we find that while the emission from the central continuum emitting region may be significantly enhanced, lensing induced magnification cannot easily reconcile the models with observations. We conclude that further modeling, including the effects of any differential magnification is required to explain the observed emission from APM 08279+5255.Comment: 12 Pages with Two figures. Accepted for publication in the Astrophysical Journal Letter
    • …
    corecore