6,680 research outputs found

    Dissing States?: Invalidation of State Action During the Rehnquist Era

    Get PDF
    Used by permission of the Virginia Law Review Association

    Computer aided design and manufacturing of composite propfan blades for a cruise missile wind tunnel model

    Get PDF
    One of the propulsion concepts being investigated for future cruise missiles is advanced unducted propfans. To support the evaluation of this technology applied to the cruise missile, a joint DOD and NASA test project was conducted to design and then test the characteristics of the propfans on a 0.55-scale, cruise missile model in a NASA wind tunnel. The configuration selected for study is a counterrotating rearward swept propfan. The forward blade row, having six blades, rotates in a counterclockwise direction, and the aft blade row, having six blades, rotates in a clockwise direction, as viewed from aft of the test model. Figures show the overall cruise missile and propfan blade configurations. The objective of this test was to evaluate propfan performance and suitability as a viable propulsion option for next generation of cruise missiles. This paper details the concurrent computer aided design, engineering, and manufacturing of the carbon fiber/epoxy propfan blades as the NASA Lewis Research Center

    Dark biological superoxide production as a significant flux and sink of marine dissolved oxygen

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sutherland, K. M., Wankel, S. D., & Hansel, C. M. Dark biological superoxide production as a significant flux and sink of marine dissolved oxygen. Proceedings of the National Academy of Sciences of the United States of America, 117(7), (2020): 3433-3439, doi:10.1073/pnas.1912313117.The balance between sources and sinks of molecular oxygen in the oceans has greatly impacted the composition of Earth’s atmosphere since the evolution of oxygenic photosynthesis, thereby exerting key influence on Earth’s climate and the redox state of (sub)surface Earth. The canonical source and sink terms of the marine oxygen budget include photosynthesis, respiration, photorespiration, the Mehler reaction, and other smaller terms. However, recent advances in understanding cryptic oxygen cycling, namely the ubiquitous one-electron reduction of O2 to superoxide by microorganisms outside the cell, remains unexplored as a potential player in global oxygen dynamics. Here we show that dark extracellular superoxide production by marine microbes represents a previously unconsidered global oxygen flux and sink comparable in magnitude to other key terms. We estimate that extracellular superoxide production represents a gross oxygen sink comprising about a third of marine gross oxygen production, and a net oxygen sink amounting to 15 to 50% of that. We further demonstrate that this total marine dark extracellular superoxide flux is consistent with concentrations of superoxide in marine environments. These findings underscore prolific marine sources of reactive oxygen species and a complex and dynamic oxygen cycle in which oxygen consumption and corresponding carbon oxidation are not necessarily confined to cell membranes or exclusively related to respiration. This revised model of the marine oxygen cycle will ultimately allow for greater reconciliation among estimates of primary production and respiration and a greater mechanistic understanding of redox cycling in the ocean.This work was supported by NASA Earth and Space Science Fellowship NNX15AR62H to K.M.S., NASA Exobiology grant NNX15AM04G to S.D.W. and C.M.H., and NSF Division of Ocean Sciences grant 1355720 to C.M.H. This research was further supported in part by Hanse-Wissenschaftskolleg Institute of Advanced Study fellowships to C.M.H. and S.D.W. We thank Danielle Hicks for assistance with figures and Community Earth Systems Model (CESM) Large Ensemble Project for the availability and use of its data product. The CESM project is primarily supported by the NSF

    On non-normality and classification of amplification mechanisms in stability and resolvent analysis

    Get PDF
    We seek to quantify non-normality of the most amplified resolvent modes and predict their features based on the characteristics of the base or mean velocity profile. A 2-by-2 model linear Navier-Stokes (LNS) operator illustrates how non-normality from mean shear distributes perturbation energy in different velocity components of the forcing and response modes. The inverse of their inner product, which is unity for a purely normal mechanism, is proposed as a measure to quantify non-normality. In flows where there is downstream spatial dependence of the base/mean, mean flow advection separates the spatial support of forcing and response modes which impacts the inner product. Success of mean stability analysis depends on the normality of amplification. If the amplification is normal, the resolvent operator written in its dyadic representation reveals that the adjoint and forward stability modes are proportional to the forcing and response resolvent modes. If the amplification is non-normal, then resolvent analysis is required to understand the origin of observed flow structures. Eigenspectra and pseudospectra are used to characterize these phenomena. Two test cases are studied: low Reynolds number cylinder flow and turbulent channel flow. The first deals mainly with normal mechanisms and quantification of non-normality using the inverse inner product of the leading forcing and response modes agrees well with the product of the resolvent norm and distance between the imaginary axis and least stable eigenvalue. In turbulent channel flow, structures result from both normal and non-normal mechanisms. Mean shear is exploited most efficiently by stationary disturbances while bounds on the pseudospectra illustrate how non-normality is responsible for the most amplified disturbances at spatial wavenumbers and temporal frequencies corresponding to well-known turbulent structures

    Elliptic Reciprocity

    Full text link
    The paper introduces the notions of an elliptic pair, an elliptic cycle and an elliptic list over a square free positive integer d. These concepts are related to the notions of amicable pairs of primes and aliquot cycles that were introduced by Silverman and Stange. Settling a matter left open by Silverman and Stange it is shown that for d=3 there are elliptic cycles of length 6. For d not equal to 3 the question of the existence of proper elliptic lists of length n over d is reduced to the the theory of prime producing quadratic polynomials. For d=163 a proper elliptic list of length 40 is exhibited. It is shown that for each d there is an upper bound on the length of a proper elliptic list over d. The final section of the paper contains heuristic arguments supporting conjectured asymptotics for the number of elliptic pairs below integer X. Finally, for d congruent to 3 modulo 8 the existence of infinitely many anomalous prime numbers is derived from Bunyakowski's Conjecture for quadratic polynomials.Comment: 17 pages, including one figure and two table

    Detecting Heatsink Types for Socketed Processors

    Get PDF
    Servers often are designed to support a socketed processor in order to allow the end user the ability to customize their compute solution for their needs. Server processor vendors offer a variety of different processor models that can be installed. These various processor models can have differing technical specifications that include core count, cache size, operating frequency limitations, memory capacity, as well as power and thermal cooling requirements. An individual server design could easily support a range of processor models from those that have few cores, providing low performance, all the way up to dozens of cores that providing high performance. Since compute resources such as cores consume power, the range of processor power can be as wide as 200W. To keep costs of a total solution down, different heatsinks are often designed and sold to support this wide range: cheap extruded aluminium heatsinks for lower performing CPUs and expensive heat piped heatsinks for higher performing CPUs

    Role of a plausible nuisance contributor in the declining obesity-mortality risks over time.

    Get PDF
    CONTEXT: Recent analyses of epidemiological data including the National Health and Nutrition Examination Survey (NHANES) have suggested that the harmful effects of obesity may have decreased over calendar time. The shifting BMI distribution over time coupled with the application of fixed broad BMI categories in these analyses could be a plausible nuisance contributor to this observed change in the obesity-associated mortality over calendar time. OBJECTIVE: To evaluate the extent to which observed temporal changes in the obesity-mortality association may be due to a shifting population distribution for body mass index (BMI), coupled with analyses based on static, broad BMI categories. DESIGN, SETTING, AND PARTICIPANTS: Simulations were conducted using data from NHANES I and III linked with mortality data. Data from NHANES I were used to fit a true model treating BMI as a continuous variable. Coefficients estimated from this model were used to simulate mortality for participants in NHANES III. Hence, the population-level association between BMI and mortality in NHANES III was fixed to be identical to the association estimated in NHANES I. Hazard ratios (HRs) for obesity categories based on BMI for NHANES III with simulated mortality data were compared to the corresponding estimated HRs from NHANES I. MAIN OUTCOME MEASURES: Change in hazard ratios for simulated data in NHANES III compared to observed estimates from NHANES I. RESULTS: On average, hazard ratios for NHANES III based on simulated mortality data were 29.3% lower than the estimates from NHANES I using observed mortality follow-up. This reduction accounted for roughly three-fourths of the apparent decrease in the obesity-mortality association observed in a previous analysis of these data. CONCLUSIONS: Some of the apparent diminution of the association between obesity and mortality may be an artifact of treating BMI as a categorical variable

    Algebraic properties of generalized Rijndael-like ciphers

    Full text link
    We provide conditions under which the set of Rijndael functions considered as permutations of the state space and based on operations of the finite field \GF (p^k) (p≥2p\geq 2 a prime number) is not closed under functional composition. These conditions justify using a sequential multiple encryption to strengthen the AES (Rijndael block cipher with specific block sizes) in case AES became practically insecure. In Sparr and Wernsdorf (2008), R. Sparr and R. Wernsdorf provided conditions under which the group generated by the Rijndael-like round functions based on operations of the finite field \GF (2^k) is equal to the alternating group on the state space. In this paper we provide conditions under which the group generated by the Rijndael-like round functions based on operations of the finite field \GF (p^k) (p≥2p\geq 2) is equal to the symmetric group or the alternating group on the state space.Comment: 22 pages; Prelim0

    Effects of NHC-Backbone Substitution on Efficiency in Ruthenium-Based Olefin Metathesis

    Get PDF
    series of ruthenium olefin metathesis catalysts bearing N-heterocyclic carbene (NHC) ligands with varying degrees of backbone and N-aryl substitution have been prepared. These complexes show greater resistance to decomposition through C−H activation of the N-aryl group, resulting in increased catalyst lifetimes. This work has utilized robotic technology to examine the activity and stability of each catalyst in metathesis, providing insights into the relationship between ligand architecture and enhanced efficiency. The development of this robotic methodology has also shown that, under optimized conditions, catalyst loadings as low as 25 ppm can lead to 100% conversion in the ring-closing metathesis of diethyl diallylmalonate
    • …
    corecore