396 research outputs found

    An Evaluation of Presence and Source of Fecal Contamination at Golden Gardens Park

    Get PDF
    Golden Gardens is an 87.8 acre Park in Seattle, WA that has come under recent scrutiny over concerns about water quality in the streams and at the beach. Located just north of Shillshole marina in Seattle it has a swimming beach which is 1439 m in length, as well as a forested region directly east of the beach on a relatively steep hill with several drainages flowing into the sound. The purpose of this study was to assess the levels of indicator bacteria in beach water and in the fresh water drainages and to determine if the bacterial contamination is related to human or animal inputs. Specifically, we were interested in determining if the off-leash area for dogs, located on the hill above the beach, was contributing to the contamination. Water was collected five times from June-August 2010 at 4 locations at two depths along the beach and as many as 20 locations in the drainages on the hill. One-hundred ml aliquots of water were analyzed in duplicate for each site sampled via membrane filtration for fecal coliforms, and enterococci. DNA from Enterococci isolates were amplified by PCR targeting the esp gene in enterococci and DNA extracted from 200ml of fresh water was amplified for the 16S rRNA gene in Bacteroides to determine the source of contamination. Fecal coliform levels for marine beach water at Golden Gardens typically meet WA State bacteriological criteria for secondary contact recreation. The stream water frequently exceeded the USEPA recommended level of 33 enteroccoci per 100ml. Preliminary PCR results showed that two of 24 samples from one sampling period were positive for human specific Enterococcus. PCR analysis for human specific Enterococcus and for human and canine specific Bacteroides is still underway for the other sampling period

    Suppressing sensorimotor activity modulates the discrimination of auditory emotions but not speaker identity

    Get PDF
    Our ability to recognize the emotions of others is a crucial feature of human social cognition. Functional neuroimaging studies indicate that activity in sensorimotor cortices is evoked during the perception of emotion. In the visual domain, right somatosensory cortex activity has been shown to be critical for facial emotion recognition. However, the importance of sensorimotor representations in modalities outside of vision remains unknown. Here we use continuous theta-burst transcranial magnetic stimulation (cTBS) to investigate whether neural activity in the right postcentral gyrus (rPoG) and right lateral premotor cortex (rPM) is involved in nonverbal auditory emotion recognition. Three groups of participants completed same-different tasks on auditory stimuli, discriminating between the emotion expressed and the speakers' identities, before and following cTBS targeted at rPoG, rPM, or the vertex (control site). A task-selective deficit in auditory emotion discrimination was observed. Stimulation to rPoG and rPM resulted in a disruption of participants' abilities to discriminate emotion, but not identity, from vocal signals. These findings suggest that sensorimotor activity may be a modality-independent mechanism which aids emotion discrimination. Copyright © 2010 the authors

    Complete Haplotype Sequence of the Human Immunoglobulin Heavy-Chain Variable, Diversity, and Joining Genes and Characterization of Allelic and Copy-Number Variation

    Get PDF
    The immunoglobulin heavy-chain locus (IGH) encodes variable (IGHV), diversity (IGHD), joining (IGHJ), and constant (IGHC) genes and is responsible for antibody heavy-chain biosynthesis, which is vital to the adaptive immune response. Programmed V-(D)-J somatic rearrangement and the complex duplicated nature of the locus have impeded attempts to reconcile its genomic organization based on traditional B-lymphocyte derived genetic material. As a result, sequence descriptions of germline variation within IGHV are lacking, haplotype inference using traditional linkage disequilibrium methods has been difficult, and the human genome reference assembly is missing several expressed IGHV genes. By using a hydatidiform mole BAC clone resource, we present the most complete haplotype of IGHV, IGHD, and IGHJ gene regions derived from a single chromosome, representing an alternate assembly of ∼1 Mbp of high-quality finished sequence. From this we add 101 kbp of previously uncharacterized sequence, including functional IGHV genes, and characterize four large germline copy-number variants (CNVs). In addition to this germline reference, we identify and characterize eight CNV-containing haplotypes from a panel of nine diploid genomes of diverse ethnic origin, discovering previously unmapped IGHV genes and an additional 121 kbp of insertion sequence. We genotype four of these CNVs by using PCR in 425 individuals from nine human populations. We find that all four are highly polymorphic and show considerable evidence of stratification (Fst = 0.3–0.5), with the greatest differences observed between African and Asian populations. These CNVs exhibit weak linkage disequilibrium with SNPs from two commercial arrays in most of the populations tested

    A minimal binding footprint on CD1d-glycolipid is a basis for selection of the unique human NKT TCR

    Get PDF
    Although it has been established how CD1 binds a variety of lipid antigens (Ag), data are only now emerging that show how αβ T cell receptors (TCRs) interact with CD1-Ag. Using the structure of the human semiinvariant NKT TCR–CD1d–α-galactosylceramide (α-GalCer) complex as a guide, we undertook an alanine scanning mutagenesis approach to define the energetic basis of this interaction between the NKT TCR and CD1d. Moreover, we explored how analogues of α-GalCer affected this interaction. The data revealed that an identical energetic footprint underpinned the human and mouse NKT TCR–CD1d–α-GalCer cross-reactivity. Some, but not all, of the contact residues within the Jα18-encoded invariant CDR3α loop and Vβ11-encoded CDR2β loop were critical for recognizing CD1d. The residues within the Vα24-encoded CDR1α and CDR3α loops that contacted the glycolipid Ag played a smaller energetic role compared with the NKT TCR residues that contacted CD1d. Collectively, our data reveal that the region distant to the protruding Ag and directly above the F′ pocket of CD1d was the principal factor in the interaction with the NKT TCR. Accordingly, although the structural footprint at the NKT TCR–CD1d–α-GalCer is small, the energetic footprint is smaller still, and reveals the minimal requirements for CD1d restriction

    MCP1 SNPs and Pulmonary Tuberculosis in Cohorts from West Africa, the USA and Argentina: Lack of Association or Epistasis with IL12B Polymorphisms

    Get PDF
    The monocyte chemotactic protein-1 (MCP-1) is a chemokine that plays an important role in the recruitment of monocytes to M. tuberculosis infection sites, and previous studies have reported that genetic variants in MCP1 are associated with differential susceptibility to pulmonary tuberculosis (PTB). We examined eight MCP1 single nucleotide polymorphisms (SNPs) in a multi-ethnic, case-control design that included: 321 cases and 346 controls from Guinea-Bissau, 258 cases and 271 controls from The Gambia, 295 cases and 179 controls from the U.S. (African-Americans), and an additional set of 237 cases and 144 controls of European ancestry from the U.S. and Argentina. Two locus interactions were also examined for polymorphisms in MCP1 and interleukin 12B (IL12B), another gene implicated in PTB risk. Examination of previously associated MCP1 SNPs rs1024611 (−2581A/G), rs2857656 (−362G/C) and rs4586 (+900C/T) did not show evidence for association. One interaction between rs2857656 and IL12B SNP rs2288831 was observed among Africans but the effect was in the opposite direction in Guineans (OR = 1.90, p = 0.001) and Gambians (OR = 0.64, p = 0.024). Our data indicate that the effect of genetic variation within MCP1 is not clear cut and additional studies will be needed to elucidate its role in TB susceptibility

    Conscious monitoring and control (reinvestment) in surgical performance under pressure.

    Get PDF
    Research on intraoperative stressors has focused on external factors without considering individual differences in the ability to cope with stress. One individual difference that is implicated in adverse effects of stress on performance is "reinvestment," the propensity for conscious monitoring and control of movements. The aim of this study was to examine the impact of reinvestment on laparoscopic performance under time pressure

    A Naturally Selected Dimorphism within the HLA-B44 Supertype Alters Class I Structure, Peptide Repertoire, and T Cell Recognition

    Get PDF
    HLA-B*4402 and B*4403 are naturally occurring MHC class I alleles that are both found at a high frequency in all human populations, and yet they only differ by one residue on the α2 helix (B*4402 Asp156→B*4403 Leu156). CTLs discriminate between HLA-B*4402 and B*4403, and these allotypes stimulate strong mutual allogeneic responses reflecting their known barrier to hemopoeitic stem cell transplantation. Although HLA-B*4402 and B*4403 share >95% of their peptide repertoire, B*4403 presents more unique peptides than B*4402, consistent with the stronger T cell alloreactivity observed toward B*4403 compared with B*4402. Crystal structures of B*4402 and B*4403 show how the polymorphism at position 156 is completely buried and yet alters both the peptide and the heavy chain conformation, relaxing ligand selection by B*4403 compared with B*4402. Thus, the polymorphism between HLA-B*4402 and B*4403 modifies both peptide repertoire and T cell recognition, and is reflected in the paradoxically powerful alloreactivity that occurs across this “minimal” mismatch. The findings suggest that these closely related class I genes are maintained in diverse human populations through their differential impact on the selection of peptide ligands and the T cell repertoire
    corecore