1,176 research outputs found

    The incidence and clinical burden of respiratory syncytial virus disease identified through hospital outpatient presentations in Kenyan children

    Get PDF
    There is little information that describe the burden of respiratory syncytial virus (RSV) associated disease in the tropical African outpatient setting. Methods We studied a systematic sample of children aged <5 years presenting to a rural district hospital in Kenya with acute respiratory infection (ARI) between May 2002 and April 2004. We collected clinical data and screened nasal wash samples for RSV antigen by immunofluorescence. We used a linked demographic surveillance system to estimate disease incidence. Results Among 2143 children tested, 166 (8%) were RSV positive (6% among children with upper respiratory tract infection and 12% among children with lower respiratory tract infection (LRTI). RSV was more likely in LRTI than URTI (p<0.001). 51% of RSV cases were aged 1 year or over. RSV cases represented 3.4% of hospital outpatient presentations. Relative to RSV negative cases, RSV positive cases were more likely to have crackles (RR = 1.63; 95% CI 1.34–1.97), nasal flaring (RR = 2.66; 95% CI 1.40–5.04), in-drawing (RR = 2.24; 95% CI 1.47–3.40), fast breathing for age (RR = 1.34; 95% CI 1.03–1.75) and fever (RR = 1.54; 95% CI 1.33–1.80). The estimated incidence of RSV-ARI and RSV-LRTI, per 100,000 child years, among those aged <5 years was 767 and 283, respectively. Conclusion The burden of childhood RSV-associated URTI and LRTI presenting to outpatients in this setting is considerable. The clinical features of cases associated with an RSV infection were more severe than cases without an RSV diagnosis

    Characterising the spatial dynamics of sympatric Aedes Aegypti and Aedes Albopictus populations in the Philippines

    Get PDF
    Entomological surveillance and control are essential to the management of dengue fever (DF). Hence, understanding the spatial and temporal patterns of DF vectors, Aedes (Stegomyia) aegypti (L.) and Ae. (Stegomyia) albopictus (Skuse), is paramount. In th

    Ecological Modeling of Aedes aegypti (L.) Pupal Production in Rural Kamphaeng Phet, Thailand

    Get PDF
    Background - Aedes aegypti (L.) is the primary vector of dengue, the most important arboviral infection globally. Until an effective vaccine is licensed and rigorously administered, Ae. aegypti control remains the principal tool in preventing and curtailing dengue transmission. Accurate predictions of vector populations are required to assess control methods and develop effective population reduction strategies. Ae. aegypti develops primarily in artificial water holding containers. Release recapture studies indicate that most adult Ae. aegypti do not disperse over long distances. We expect, therefore, that containers in an area of high development site density are more likely to be oviposition sites and to be more frequently used as oviposition sites than containers that are relatively isolated from other development sites. After accounting for individual container characteristics, containers more frequently used as oviposition sites are likely to produce adult mosquitoes consistently and at a higher rate. To this point, most studies of Ae. aegypti populations ignore the spatial density of larval development sites. Methodology - Pupal surveys were carried out from 2004 to 2007 in rural Kamphaeng Phet, Thailand. In total, 84,840 samples of water holding containers were used to estimate model parameters. Regression modeling was used to assess the effect of larval development site density, access to piped water, and seasonal variation on container productivity. A varying-coefficients model was employed to account for the large differences in productivity between container types. A two-part modeling structure, called a hurdle model, accounts for the large number of zeroes and overdispersion present in pupal population counts. Findings - The number of suitable larval development sites and their density in the environment were the primary determinants of the distribution and abundance of Ae. aegypti pupae. The productivity of most container types increased significantly as habitat density increased. An ecological approach, accounting for development site density, is appropriate for predicting Ae. aegypti population levels and developing efficient vector control program

    Hard-Object Feeding in Sooty Mangabeys (Cercocebus atys) and Interpretation of Early Hominin Feeding Ecology

    Get PDF
    Morphology of the dentofacial complex of early hominins has figured prominently in the inference of their dietary adaptations. Recent theoretical analysis of craniofacial morphology of Australopithecus africanus proposes that skull form in this taxon represents adaptation to feeding on large, hard objects. A modern analog for this specific dietary specialization is provided by the West African sooty mangabey, Cercocebus atys. This species habitually feeds on the large, exceptionally hard nuts of Sacoglottis gabonensis, stereotypically crushing the seed casings using their premolars and molars. This type of behavior has been inferred for A. africanus based on mathematical stress analysis and aspects of dental wear and morphology. While postcanine megadontia, premolar enlargement and thick molar enamel characterize both A. africanus and C. atys, these features are not universally associated with durophagy among living anthropoids. Occlusal microwear analysis reveals complex microwear textures in C. atys unlike those observed in A. africanus, but more closely resembling textures observed in Paranthropus robustus. Since sooty mangabeys process hard objects in a manner similar to that proposed for A. africanus, yet do so without the craniofacial buttressing characteristic of this hominin, it follows that derived features of the australopith skull are sufficient but not necessary for the consumption of large, hard objects. The adaptive significance of australopith craniofacial morphology may instead be related to the toughness, rather than the hardness, of ingested foods

    Dental Microwear and Diet of the Plio-Pleistocene Hominin Paranthropus boisei

    Get PDF
    The Plio-Pleistocene hominin Paranthropus boisei had enormous, flat, thickly enameled cheek teeth, a robust cranium and mandible, and inferred massive, powerful chewing muscles. This specialized morphology, which earned P. boisei the nickname “Nutcracker Man”, suggests that this hominin could have consumed very mechanically challenging foods. It has been recently argued, however, that specialized hominin morphology may indicate adaptations for the consumption of occasional fallback foods rather than preferred resources. Dental microwear offers a potential means by which to test this hypothesis in that it reflects actual use rather than genetic adaptation. High microwear surface texture complexity and anisotropy in extant primates can be associated with the consumption of exceptionally hard and tough foods respectively. Here we present the first quantitative analysis of dental microwear for P. boisei. Seven specimens examined preserved unobscured antemortem molar microwear. These all show relatively low complexity and anisotropy values. This suggests that none of the individuals consumed especially hard or tough foods in the days before they died. The apparent discrepancy between microwear and functional anatomy is consistent with the idea that P. boisei presents a hominin example of Liem's Paradox, wherein a highly derived morphology need not reflect a specialized diet

    Control of position and movement is simplified by combined muscle spindle and Golgi tendon organ feedback

    Get PDF
    Whereas muscle spindles play a prominent role in current theories of human motor control, Golgi tendon organs (GTO) and their associated tendons are often neglected. This is surprising since there is ample evidence that both tendons and GTOs contribute importantly to neuromusculoskeletal dynamics. Using detailed musculoskeletal models, we provide evidence that simple feedback using muscle spindles alone results in very poor control of joint position and movement since muscle spindles cannot sense changes in tendon length that occur with changes in muscle force. We propose that a combination of spindle and GTO afferents can provide an estimate of muscle-tendon complex length, which can be effectively used for low-level feedback during both postural and movement tasks. The feasibility of the proposed scheme was tested using detailed musculoskeletal models of the human arm. Responses to transient and static perturbations were simulated using a 1-degree-of-freedom (DOF) model of the arm and showed that the combined feedback enabled the system to respond faster, reach steady state faster, and achieve smaller static position errors. Finally, we incorporated the proposed scheme in an optimally controlled 2-DOF model of the arm for fast point-to-point shoulder and elbow movements. Simulations showed that the proposed feedback could be easily incorporated in the optimal control framework without complicating the computation of the optimal control solution, yet greatly enhancing the system's response to perturbations. The theoretical analyses in this study might furthermore provide insight about the strong physiological couplings found between muscle spindle and GTO afferents in the human nervous system. © 2013 the American Physiological Society

    Asymmetric triplex metallohelices with high and selective activity against cancer cells

    Get PDF
    Small cationic amphiphilic α-helical peptides are emerging as agents for the treatment of cancer and infection, but they are costly and display unfavourable pharmacokinetics. Helical coordination complexes may offer a three-dimensional scaffold for the synthesis of mimetic architectures. However, the high symmetry and modest functionality of current systems offer little scope to tailor the structure to interact with specific biomolecular targets, or to create libraries for phenotypic screens. Here, we report the highly stereoselective asymmetric self-assembly of very stable, functionalized metallohelices. Their anti-parallel head-to-head-to-tail ‘triplex’ strand arrangement creates an amphipathic functional topology akin to that of the active sub-units of, for example, host-defence peptides and ​p53. The metallohelices display high, structure-dependent toxicity to the human colon carcinoma cell-line HCT116 ​p53++, causing dramatic changes in the cell cycle without DNA damage. They have lower toxicity to human breast adenocarcinoma cells (MDA-MB-468) and, most remarkably, they show no significant toxicity to the bacteria methicillin-resistant Staphylococcus aureus and Escherichia coli. At a glanc

    New Forearm Elements Discovered of Holotype Specimen Australovenator wintonensis from Winton, Queensland, Australia

    Get PDF
    New skeletal elements are reported of the holotype specimen Australovenator wintonensis, from the type locality, near Winton, central western Queensland. New elements include left and right humeri, right radius, right radiale, right distal carpal 1, near complete right metacarpal I, left manual phalanx II-1, left manual phalanx II-2, near complete left manual phalanx II-3 and a left manual phalanx III-3. These new elements combined with those previously described are compared against other neovenatorids

    Modifying Effects of the HFE Polymorphisms on the Association between Lead Burden and Cognitive Decline

    Get PDF
    Background: As iron and lead promote oxidative damage, and hemochromatosis (HFE) gene polymorphisms increase body iron burden, HFE variant alleles may modify the lead burden and cognitive decline relationship. Objective: Our goal was to assess the modifying effects of HFE variants on the lead burden and cognitive decline relation in older adults. Methods: We measured tibia and patella lead using K-X-ray fluorescence (1991–1999) among participants of the Normative Aging Study, a longitudinal study of community-dwelling men from greater Boston. We assessed cognitive function with the Mini-Mental State Examination (MMSE) twice (1993–1998 and 1995–2000) and genotyped participants for HFE polymorphisms. We estimated the adjusted mean differences in lead-associated annual cognitive decline across HFE genotype groups (n = 358). Results: Higher tibia lead was associated with steeper cognitive decline among participants with at least one HFE variant allele compared with men with only wild-type alleles (p interaction = 0.03), such that a 15 μg/g increase in tibia lead was associated with a 0.2 point annual decrement in MMSE score among HFE variant allele carriers. This difference in scores among men with at least one variant allele was comparable to the difference in baseline MMSE scores that we observed among men who were 4 years apart in age. Moreover, the deleterious association between tibia lead and cognitive decline appeared progressively worse in participants with increasingly more copies of HFE variant alleles (p-trend = 0.008). Results for patella lead were similar. Conclusion: Our findings suggest that HFE polymorphisms greatly enhance susceptibility to lead-related cognitive impairment in a pattern consistent with allelelic dose
    corecore