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Genetic inactivation of ANGPTL4 improves glucose
homeostasis and is associated with reduced risk of
diabetes
Viktoria Gusarova et al.#

Angiopoietin-like 4 (ANGPTL4) is an endogenous inhibitor of lipoprotein lipase that mod-

ulates lipid levels, coronary atherosclerosis risk, and nutrient partitioning. We hypothesize

that loss of ANGPTL4 function might improve glucose homeostasis and decrease risk of type

2 diabetes (T2D). We investigate protein-altering variants in ANGPTL4 among 58,124 par-

ticipants in the DiscovEHR human genetics study, with follow-up studies in 82,766 T2D cases

and 498,761 controls. Carriers of p.E40K, a variant that abolishes ANGPTL4 ability to inhibit

lipoprotein lipase, have lower odds of T2D (odds ratio 0.89, 95% confidence interval

0.85–0.92, p= 6.3 × 10−10), lower fasting glucose, and greater insulin sensitivity. Predicted

loss-of-function variants are associated with lower odds of T2D among 32,015 cases and

84,006 controls (odds ratio 0.71, 95% confidence interval 0.49–0.99, p= 0.041). Functional

studies in Angptl4-deficient mice confirm improved insulin sensitivity and glucose home-

ostasis. In conclusion, genetic inactivation of ANGPTL4 is associated with improved glucose

homeostasis and reduced risk of T2D.
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The lipoprotein lipase (LPL) pathway has emerged as an
attractive therapeutic target for reducing lipid levels and
cardiovascular risk. Angiopoietin-like 4 (ANGPTL4) is a

widely expressed endogenous inhibitor of LPL that modulates free
fatty acid delivery to adipose and oxidative tissues during fasting
and fed states1–4. Genetic variants in ANGPTL4 are robustly
associated with triglyceride and high-density lipoprotein choles-
terol (HDL-C) levels in humans5,6, an observation which is
supported by reduction in triglyceride and increase in HDL-C
levels in response to antibody inhibition of ANGPTL4 in animal
models7,8. Furthermore, inactivating variants in ANGPTL4 are
associated with reduced risk of coronary artery disease in
humans, suggesting that ANGPTL4 and related LPL modulators
may be targets for modification of dyslipidemia-related athero-
sclerotic cardiovascular disease8,9. Because modulation of LPL
activity in oxidative tissues affects free fatty acid delivery10–13,
and thereby nutrient partitioning and insulin sensitivity, endo-
genous regulators of LPL activity may impact glucose homeostasis
and risk for development of type 2 diabetes. Together, these
observations suggest that genetic inhibition of ANGPTL4 func-
tion might have a favorable impact on glucose homeostasis in
humans and reduce risk of type 2 diabetes. This hypothesis is
supported by a recent report of reduced type 2 diabetes risk
associated with the p.E40K variant that abolishes ANGPTL4
ability to inhibit LPL14,15. It is not yet known whether p.E40K
affects glucose homeostasis in non-diabetics, whether other var-
iants that abolish ANGPTL4 function modify type 2 diabetes risk,
or how loss of ANGPTL4 function modifies glucose homeostasis
and type 2 diabetes risk.

There are conflicting published reports of the relationship
between ANGPTL4 function and glucose homeostasis in animal
models. ANGPTL4 overexpression in mice has been variously
reported to have no effect on blood glucose levels4,16, to decrease
blood glucose and improve glucose tolerance17,18, and to impair
glucose tolerance19. The discrepancies in these results may be
related to the level and the site of ANGPTL4 overexpression.
Metabolic investigations in whole body Angptl4-deficient mice
may inform on the glycemic effects of global ANGPTL4
inhibition.

In this study, we examine the association of genetic variants
that abolish ANGPTL4 function with fasting glucose, oral glucose
tolerance, and risk for type 2 diabetes in 58,124 individuals of
European ancestry sampled from a large US health care popu-
lation, and in 13 additional datasets comprising 82,766 type 2
diabetes cases and 498,761 controls. We also evaluate the func-
tional consequences of rare and novel genetic variants identified
by exome sequencing, as well as the effect of Angptl4 deletion on
insulin sensitivity and glucose homeostasis.

We find that p.E40K in ANGPTL4 is associated with lower
fasting glucose and greater insulin sensitivity in humans, as well
as reduced risk of type 2 diabetes. Other rare predicted loss-of-
function variants in ANGPTL4 are also associated with lower risk
of type 2 diabetes, providing additional allelic evidence that
genetic loss of ANGPTL4 function improves glucose homeostasis
in humans. Angptl4-deficient mice manifest greater insulin sen-
sitivity and improved glucose homeostasis, further supporting for
the conclusion that genetic inactivation of ANGPTL4 improves
glucose homeostasis and reduces risk of type 2 diabetes.

Results
Whole exome sequencing identifies rare variants in ANGPTL4.
Whole exome sequencing was performed in 58,124 adult parti-
cipants of European ancestry in the DiscovEHR study. Demo-
graphics and clinical characteristics of the study population are
shown in Supplementary Table 1. We identified 2235

heterozygotes and 26 homozygotes for p.E40K (minor allele fre-
quency (MAF) 1.97%), which has been shown to abolish
ANGPTL4 ability to inhibit LPL15. Twenty-one additional rare
predicted loss-of-function (pLoF) variants in ANGPTL4 were
identified: 8 premature stop variants, 10 open reading frame
shifting insertion/deletion variants, 2 splice acceptor variants, and
1 splice donor variant (Supplementary Table 2). In all, 125
individuals were heterozygous for these pLoF variants (cumula-
tive allele frequency 0.11%). The most frequently observed pLoF
variant was a single-nucleotide deletion at Glycine 313 (p.
G313fs), which was observed in 69 DiscovEHR participants. We
did not observe homozygotes or compound heterozygotes for
these genetic variants in the DiscovEHR population.

ANGPTL4 p.E40K reduces the risk of type 2 diabetes. We
examined associations of ANGPTL4 p.E40K with type 2 diabetes
defined by an Electronic Health Record (EHR) algorithm in the
DiscovEHR study (Fig. 1). The allele frequency of p.E40K was
lower in type 2 diabetes cases (1.82%: 461 heterozygotes and 5
homozygotes among 12,945 cases) than in non-diabetic controls
(2.07%: 1457 heterozygotes and 19 homozygotes among 36,165
controls), corresponding to a reduction in odds of diabetes of 10%
after adjusting for age, age2, sex, and four principal components
of ancestry (odds ratio ((OR) 0.90, 95% confidence interval (CI)
0.81–1.00, p= 0.042). Type 2 diabetes cases and non-diabetic
controls were not selected by age in DiscovEHR, and, as expected,
type 2 diabetes cases were older than non-diabetic controls.
However, there was not a meaningful difference in age between
genotype groups, suggesting that age was not likely a confounder
of this analysis (Supplementary Table 3), and the association of p.
E40K with type 2 diabetes persisted after adjusting for linear and
quadratic effects of age. Adjustment for body mass index (BMI)
did not meaningfully change the association with type 2 diabetes
(OR 0.85, 95% CI 0.76–0.96, p= 0.0076). We sought replication
of this observation of reduced odds of type 2 diabetes among p.
E40K variant carriers in 13 additional studies comprising 82,766
type 2 diabetes cases and 498,761 controls (Supplementary
Table 4 and Fig. 1). Inverse variance weighted fixed-effects meta-
analysis of the association of p.E40K with type 2 diabetes in these
cohorts yielded an overall OR for type 2 diabetes of 0.88 (95% CI
0.85–0.92, p= 5.0 × 10−9). Inclusion of the DiscovEHR popula-
tion in this meta-analysis yielded an OR of 0.89 for type 2 dia-
betes (95% CI 0.85–0.92, p= 6.3 × 10−10).

ANGPTL4 p.E40K improves glucose homeostasis. We also
evaluated associations of p.E40K with fasting glucose in non-
diabetic participants in the DiscovEHR study (n= 26,644 parti-
cipants with fasting glucose measurements), an independent
DiscovEHR replication cohort (n= 13,732), the UPenn study (n
= 5782), the T2D-GENES, GoT2D, and DIAGRAM studies (n=
33,245), the Malmo Diet and Cancer Study (n= 4848), the
HUNT study (n= 2714), and the deCODE study (n= 39,700);
results are summarized in Supplementary Table 5. In five of these
six studies, p.E40K was associated with lower fasting glucose, and
nominally significant association with fasting glucose was
observed in meta-analysis of these six studies (p= 0.0024, total n
= 120,050). To further understand the association of p.E40K with
glucose homeostasis in humans, we performed association ana-
lyses of the p.E40K variant with tolerance to a 75 g oral glucose
challenge in up to 8081 non-diabetic participants in the NIDDM
Botnia20 and Prevalence, Prediction, and Prevention of Diabetes-
Botnia21 studies (Supplementary Table 6). In these studies, p.
E40K was associated with nominally significantly lower insulin
levels at 30 and 120 min after glucose administration, as well as
lower insulinogenic index (β=−0.15 Z score units, standard

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04611-z

2 NATURE COMMUNICATIONS |  (2018) 9:2252 | DOI: 10.1038/s41467-018-04611-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


error (SE) 0.047, p= 0.002) and higher insulin sensitivity index
(β= 0.13 Z score units, SE 0.043, p= 0.0026). These findings
suggest that p.E40K influences glucose homeostasis in non-
diabetics via increased insulin sensitivity, and provide mechan-
istic insight into the association of p.E40K with reduced risk of
type 2 diabetes.

Rare pLoFs in ANGPTL4 reduce the risk of type 2 diabetes. To
understand whether ANGPTL4 pLoF variants were also asso-
ciated with type 2 diabetes, we evaluated the prevalence of pLoFs
in ANGPTL4 in exome sequence data from 32,015 type 2 diabetes
cases and 84,006 controls in six population case–control studies
(Supplementary Table 7). In five of the six studies, ANGTPL4
pLoF variants were less frequent among cases than controls
(Table 1). We used a two-sided exact conditional test to combine
the counts across studies given the low number of type 2 diabetes
cases co-occurring with ANGPTL4 pLoFs, finding 29% lower
odds of type 2 diabetes among carriers of pLoF variants (OR 0.71,
95% CI 0.49–0.99, p= 0.041). Collectively, these findings indicate
that genetic variants that abolish ANGPTL4 function are

associated with improved insulin sensitivity and glucose home-
ostasis and reduced risk of type 2 diabetes in humans.

ANGPTL4 p.E40K primarily influences metabolic measures.
Previous studies have noted a potential toxicity, abdominal
lymphadenopathy, in Angptl4-deficient and ANGPTL4 antibody-
treated animals on high-fat diets7,8,22. In an effort to determine if
this finding has clinical relevance in humans, we evaluated the
general health effects of homozygosity for the p.E40K variant by
reviewing complete electronic health records available for 17
living individuals homozygous for p.E40K, including diagnosis
and procedure codes, imaging and laboratory data, medication
data and clinic notes covering a median of 6 years of clinical care
(range 1–20 years). Five of these individuals had incidental
abdominal computed tomography imaging performed; four of the
radiologist reports commented specifically on normal abdominal
lymph nodes, and the fifth reported normal findings with no
comment on abdominal lymph nodes. A full summary of clinical
findings is presented in Supplementary Data 1. These findings
suggest that abdominal lymphadenopathy and related conditions

Table 1 Associations of ANGPTL4 loss-of- function variants and type 2 diabetes

ANGPTL4 LoF carriers Total Frequency

Study Cases Controls Cases Controls Cases Controls

DiscovEHR 22 85 12,969 36,217 0.0008 0.0012
DiscovEHR 30K replication 5 47 3,456 22,372 0.0007 0.0011
UPenn 3 13 734 4,066 0.0020 0.0016
Duke 2 10 1,630 4,903 0.0006 0.0010
TAICHI 0 3 4,392 4,699 0.0000 0.0003
DHS-EA 0 5 104 1,255 0.0000 0.0020
DHS-AA 0 1 357 2,028 0.0000 0.0002
T2D-Genes/GoT2D/DIAGRAM 14 19 8,373 8,466 0.0008 0.0011
Total 46 183 32,015 84,006 0.0007 0.0011

AA African American, CI confidence interval, Duke Duke CATHGEN cohort, EA European American, TD2-Genes/GoT2D/DIAGRAM combined analysis of T2D-GENES, GoT2D and DIAGRAM studies, pLoF
predicted loss-of-function variant, Penn University of Pennsylvania Medicine Biobank, TAICHI TAIwan MetaboCHIp consortium
The overall odds ratio for ANGPTL4 pLoFs and type 2 diabetes risk, using a two-sided exact conditional test, was 0.71 (95% CI 0.49–0.99, p= 0.041)
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Fig. 1 ANGPTL4 p.E40K associates with reduced risk of type 2 diabetes. The association between the p.E40K variant and type 2 diabetes was tested in each
study using logistic or Firth logistic regression, coding genotypes according to an additive model. “Combined” effects were calculated using inverse
variance weighted fixed-effects meta-analysis. For each study, the squares indicate the odds ratio and lines indicate 95% confidence intervals. The square
size is proportional to the standard error of the estimate. CI confidence interval, CGPS Copenhagen General Population Studies, DECODE deCODE,
DiscovEHR DiscovEHR Discovery Study, DiscovEHR DiscovEHR-30K, DiscovEHR 30K Replication Study, EINT-C EPIC interact–CoreExome, EINT-Q EPIC
Interact–Quad660, ENOR EPIC Norfolk, HUNT the Nord-Trøndelag Health study, MDC Malmo Diet and Cancer Study, MGI the Michigan Genomics
Initiative, TD2G/GT2D/DG combined analysis of T2D-GENES, GoT2D, and DIAGRAM studies, UKBB United Kingdom Biobank. The study populations are
described in full in Supplementary Table 4 and in the Supplementary Note
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are not common findings in humans homozygous for the K40
allele that abolishes ANGPTL4 ability to inhibit LPL.

To more comprehensively examine the clinical consequences
of the p.E40K variant, we performed phenome-wide studies of
association of p.E40K in 86,319 total individuals from the
DiscovEHR discovery and replication cohorts. Using a Bonferroni
significance threshold of 2.90 × 10−5 for associations with 1465
disease diagnoses and 261 clinical measurements from EHRs
(Supplementary Data 2 and 3), we identified statistically
significant associations with hyperglyceridemia, triglyceride,
HDL-C, and non-HDL cholesterol levels, as well as leukocyte
counts. These findings suggest that the clinical effects of the p.
E40K variant may be specific to lipid levels and glucose
homeostasis.

ANGPTL4 p.E40K and pLOFs abolish ANGPTL4 function. To
understand whether the p.E40K variant and the most abundant
pLoF, p.G313fs, were associated with changes in circulating levels
of ANGPTL4 protein in humans, we measured ANGPTL4 pro-
tein levels in available fasting serum samples from 86 p.E40K
variant carriers, 42 p.G313fs variant carriers, and 55 non-carriers.
Consistent with previous data23, the concentrations of ANGPTL4
protein in p.E40K variant carriers (203 ± 12 ng/ml) and in mat-
ched controls (188 ± 16 ng/ml) were not statistically different
(Fig. 2). ANGPTL4 protein levels were reduced by 45% in het-
erozygous p.G313fs variant carriers (103.4 ± 9.5 ng/ml) compared
to non-carriers. These findings are consistent with the expectation
that heterozygous LoF genotype corresponds to complete loss of
expression of one ANGPTL4 allele.

To further understand the functional consequences of the p.
E40K variant and the p.G313fs variant, we performed over-
expression studies using hydrodynamic delivery of human
ANGPTL4 constructs to livers of chow-fed C57Bl/6 mice. These
experiments revealed similarly increased plasma levels of E40 and
K40 ANGPTL4. However, only E40 ANGPTL4 elicited an
increase in plasma triglyceride levels, consistent with the
observation that the p.E40K mutation prevents oligomerization
of ANGPTL4, a step required for LPL inhibition15. Over-
expression of ANGPTL4 with the Gly313fs variant did not
increase plasma ANGPTL4 or triglyceride levels, suggesting this
frame shift variant precludes ANGPTL4 presence in the
circulation (Fig. 3). Collectively, these results suggest that p.
E40K and p.G313fs both result in loss of ANGPTL4 expression
and/or function.

Angptl4-deficient mice have improved glucose homeostasis. To
investigate the effects of genetic loss of ANGPTL4 function on
glucose homeostasis in mice, we created Angptl4-deficient
(Angptl4−/−) mice. Deletion of Angptl4 led to significant reduc-
tion in circulating triglycerides as reported previously4 (Supple-
mentary Fig. 1a and b). When placed on high-fat diet, Angptl4−/−

mice not only had reduced circulating triglycerides and choles-
terol levels (Fig. 4a, b), but also had 31% lower non-fasted blood
glucose (Angptl4+/+: 318 ± 17 mg/dl, n= 11; Angptl4−/−: 221 ±
26 mg/dl, n= 9) and improved glucose tolerance and insulin
sensitivity (Fig. 4c–e). On chow diets, glucose levels and glucose
tolerance were not significantly different between Angptl4−/− and
Angptl4+/+ littermates (Supplementary Fig. 1c-e).

The improvement in glucose homeostasis in high-fat fed
Angptl4−/− mice was not associated with changes in body weight
or body composition when compared to their wildtype littermates
(Fig. 5a–c, Supplementary Fig. 1f-h). Absolute liver weights and
hepatic triglyceride accumulation were reduced in Angptl4−/−

mice after high-fat feeding (Fig. 5d, f), demonstrating that
Angptl4 deletion protects from fatty liver development. These

findings were also supported by reduction of neutral lipids
accumulation in the livers of Angptl4−/− mice based on Oil Red
O staining (Fig. 5g). Meanwhile, the epididymal fat pad weights
showed no difference between the genotypes (Fig. 5e), suggesting
normal peripheral fat storage.

To investigate the metabolic consequences of Angptl4 deletion,
high-fat fed Angptl4−/− mice and their wildtype littermates were
placed into metabolic cages. The analysis revealed no differences
in O2 consumption, CO2 production (Supplementary Fig. 2a and
b) respiratory quotient, activity, food intake, or energy expendi-
ture between the genotypes (Fig. 5h–k). At the end of the study
(9 weeks on high-fat diet), the Angptl4−/− mice were in good
health, as judged by comparable weight gain, activity, energy
expenditure, and food intake to control mice (Fig. 2). Further-
more, no signs of intestinal abnormalities or lethality were
observed. Collectively, these findings show that genetic deficiency
of Angptl4 improves glucose homeostasis and insulin sensitivity
without associated changes in body weight, composition or
metabolism.

Discussion
In summary, by sequencing the exons of ANGPTL4 in 58,124
participants in the DiscovEHR study population, we identified
2235 heterozygotes and 26 homozygotes for the p.E40K variant
that has been shown to have decreased ability to inhibit LPL
function15. We identified 21 additional variants that were pre-
dicted to inactivate one allele of ANGPTL4. Linking genetic
variants to EHR-derived phenotypes, we found that p.E40K and
other pLoF variants in ANGPTL4 were associated with reduced
risk of type 2 diabetes, with p.E40K reaching genome-wide sig-
nificance in analysis of 95,711 type 2 diabetes cases and 534,926
controls, and pLoFs reaching nominal significance in analyses of
exome data from 32,015 type 2 diabetes cases and 84,006 controls.
These findings confirm and extend findings from a recent report
of reduced type 2 diabetes risk associated with p.E40K14. Further,
the p.E40K variant was nominally associated with lower fasting
glucose in non-diabetic humans and improved insulin sensitivity
in oral glucose tolerance tests. A gain-of-function genetic variant
in LPL has been reported to be associated with lower fasting
insulin and type 2 diabetes risk24, indicating that genetic mod-
ulation of lipoprotein lipase activity affects insulin sensitivity and
diabetes risk in humans. Whether the association of genetic
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variants that inactivate ANGPTL4 with reduced type 2 diabetes
risk is mediated exclusively via modulation of lipoprotein lipase
activity or involves other mechanisms remains to be clarified.

Furthermore, we found that deletion of Angplt4 in mice fed a
high-fat diet improved insulin sensitivity and glucose homeostasis
in fasting and post-prandial states. Although the mechanism
linking loss of ANGPTL4 function to improved insulin sensitivity
and glucose homeostasis is not completely understood, our ani-
mal studies revealed that improved glucose homeostasis with

Angptl4 deletion occurs without changes in body weight, body fat
content or energy metabolism. We also observed a reduction in
triglyceride accumulation in the livers of the Angptl4−/− mice
when placed on a high-fat diet. These findings are consistent with
recent findings in adipose-specific Angptl4 knockout mice25. The
authors reported increased plasma fatty acids uptake by adipose
tissue, along with increased triglyceride lipolysis and oxidation
leading to reduction in ectopic lipids accumulation in liver and
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skeletal muscle, and concomitant improvement in glucose toler-
ance and insulin sensitivity.

Our data, in combination with findings of favorable lipid
profiles and reduced risk of coronary artery disease5,6,8, provide
human genetics support for ANGPTL4 inhibition as a therapeutic
strategy for prevention and possibly treatment of metabolic dis-
ease. The observation of an association between protein-
truncating genetic variants in SLC30A8 and reduced risk of

type 2 diabetes has illuminated a new therapeutic target oppor-
tunity for type 2 diabetes26. A genetic variant in GLP1R that
mimics the glycemic effects of the Food and Drug Administration
(FDA)-approved antidiabetic glucagon-like peptide-1 receptor
agonists27 has also been shown to reduce coronary heart disease
risk28. We describe ANGPTL4 as a gene in which loss-of-function
variants confer protection from both coronary atherosclerosis and
type 2 diabetes. Concerns remain about therapeutic modulation
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Fig. 5 Angptl4−/− mice have reduced liver fat. a Body weight, (b) lean and (c) fat mass in Angptl4−/− and littermate control mice on a high-fat diet. d Liver
and (e) epididymal white fat weights were evaluated in mice described in (a–c) at the time of killing. f Hepatic triglyceride levels and (g) neutral lipid
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analysis was conducted by Welch’s t-test; *p < 0.05; **p < 0.01. The study was conducted in two different cohorts of mice, with qualitatively similar results
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of ANGPTL4 related to observations of abdominal lymphade-
nopathy in Angptl4-deficient and ANGPTL4 antibody-treated
animals7,8,22. In a small number of human patients homozygous
for K40, abdominal imaging did not demonstrate lymphadeno-
pathy, raising the question of whether this concern is relevant in
humans. It is not yet clear whether a larger sampling of indivi-
duals deficient in ANGPTL4 activity would reveal abdominal
lymphadenopathy, or whether therapeutic antagonism of
ANGPTL4 late in life will have similar effects in humans.

Our study has important limitations. We focused on type 2
diabetes risk in individuals with a known reduced-function allele
(p.E40K) and among carriers of splice-disrupting, frame shifting,
premature stop, and start or stop loss variants. Other coding or
regulatory non-coding variants might yield additional insight into
the effects, in humans, of ANGPTL4 antagonism. Our study was
performed in individuals of primarily European ancestry; it is not
known whether our observations will generalize to individuals
from other ancestries. Finally, the metabolic and diabetes asso-
ciations were primarily driven by phenotypic observations in
heterozygous carriers of loss-of-function variants. Whether such
observations will accurately reflect the phenotypic effects of more
complete therapeutic blockade is not clear.

In conclusion, we found that loss-of-function variants in
ANGPTL4 were associated with increased insulin sensitivity and
reduced risk of type 2 diabetes, mirroring the beneficial effects on
glucose homeostasis of deletion of Angptl4 in mice. ANGPTL4
may be a promising target for therapeutic inhibition for reduction
of metabolic disease risk in humans.

Methods
Study oversight of human genetics studies. We conducted human genetics
studies using DNA samples and data from 13 study cohorts. The DiscovEHR study
was performed by the Regeneron Genetics Center and the Geisinger Health System,
and the Regeneron Genetics Center funded study sample collection, sequence data
generation, and clinical and sequence data analysis for DiscovEHR. All human
subject research was approved by the relevant institutional review boards, and all
participants gave informed written consent.

Sequencing of ANGPTL4 at the Regeneron Genetics Center®. Sequence data for
ANGPTL4 were extracted from exome sequences generated at the Regeneron
Genetics Center® with the use of protocols as described8,29. Briefly, genomic DNA
was sheared to an average fragment length of 150 base pairs and prepared for
exome capture with NimbleGen probes (SeqCap VCRome) or xGen Exome
Research Panel v1.0 (Integrated DNA Technologies). Captured DNA was ampli-
fied, quantified, and subsequently sequenced on an Illumina v4 HiSeq 2500
instrument (to approximately 80× mean haploid read depth of targeted bases).
Sequence reads were aligned to the human reference build GRCh38, and single-
nucleotide variants (SNVs) and insertion/deletion (indel) sequence variants were
identified using the Genome Analysis Toolkit30, and annotated using SnpEff31.

Variants in ANGPTL4 were identified via positional intersection with Ensembl
transcript ENST00000301455 (RefSeq mRNA sequence NM_139314). The
following variants were defined as predicted loss-of-function (pLoF) variants: SNVs
leading to loss of a start codon, or loss of a stop codon, or to a premature stop
codon; open reading frame shifting indels leading to the formation of a premature
stop codon; and SNVs or indels disrupting canonical splice acceptor or donor
dinucleotides. Carriers of the missense mutation p.E40K (rs116843064), which has
been previously characterized functionally as a reduced-function variant15, were
also identified using the SnpEff annotations. Sanger sequencing of pLoF variant
regions was performed as described for select variants, focusing on indel variants.

Association of p.E40K with type 2 diabetes and glucose. Thirteen study
populations were used to evaluate associations of p.E40K with type 2 diabetes. Six
of these study populations (DiscovEHR study, DiscovEHR replication cohort,
UPenn study, the T2D-GENES, GoT2D, and DIAGRAM studies, the Malmo Diet
and Cancer Study, and the HUNT study) were used to evaluate associations of
rs116843064 with fasting glucose in non-diabetic individuals. A summary of stu-
dies, including definitions for type 2 diabetes case status, is provided in Supple-
mentary Table 4.

The DiscovEHR human genetics study population for this analysis included: (1)
58,124 consented enrollees of European ancestry from the ongoing MyCode
Community Health Initiative in the Geisinger Health System (“DiscovEHR study”)
that were used for primary association discovery; and (2) an additional 28,915
exome-sequenced DiscovEHR study participants of European ancestry

(“DiscovEHR replication cohort”). Participants were recruited from outpatient
primary care and specialty clinics, the cardiac catheterization laboratory, and from
patient populations referred for bariatric and abdominal vascular surgery between
2007 and 2016. Clinical laboratory measurements, International Classification of
Diseases, Ninth Revision (ICD-9) disease diagnosis codes, medications, and
procedural codes were extracted from the EHR recording a median of 15 years of
clinical care.

Type 2 diabetes was defined using a modified version of the Electronic Medical
Records and Genomics (eMERGE) Network type 2 diabetes electronic phenotyping
algorithm32. In brief, patients were considered to have type 2 diabetes if they had at
least two out of (1) a diagnosis of type 2 diabetes in the electronic health record,
(2i) antidiabetic medication use, or (3) fasting glucose greater than 126 mg/dl or
hemoglobin A1c greater than 6.5%. Patients who met criteria (2) and (3) and who
had a type 1 diabetes diagnosis only were excluded. Type 2 diabetes controls were
patients who had met none of the three inclusion criteria.

Median values for serially measured laboratory and anthropometric traits,
including BMI and fasting glucose were calculated for all individuals with two or
more measurements in the EHR following removal of likely spurious values that
were greater than three standard deviations from the intra-individual median value.
BMI values obtained during pregnancy were excluded.

We performed association analysis using the Mixed Model Analysis for
Pedigrees (MMAP) (https://mmap.github.io/) software, which accounts for the
relatedness of study subjects by conditioning the genotype–phenotype correlations
on the phenotypic correlations among relative pairs. For both the discovery and
replication cohorts, genetic relatedness matrices (GRMs) and principal
components (PCs) were calculated using autosomal SNVs with MAF ≥5% and in
approximate linkage equilibrium (LD pruning performed in PLINK using the
--indep-pairwise command with window size of 50 variants, step size of 5 variants,
and r2 threshold of 0.5), excluding variants in the major histocompatibility
complex and other high complexity regions of the genome.

We used linear mixed models (LMMs) of association to test for associations
between log-transformed median glucose (discovery cohort) or untransformed
median glucose (replication cohort) values and genotype for aggregated ANGPTL4
pLoFs and p.E40K. We generated residuals adjusted for age, age2, sex, and the first
four PCs of ancestry. Trait residuals were tested for association with genotype
under an additive genetic model, and a study-specific GRM, which captures
population structure from ancestry and relatedness, was included in each model as
a random-effects covariate. We tested for associations between genotype and type 2
diabetes disease status in each cohort using linear mixed models adjusted for age,
age2, sex, the first four PCs of ancestry, and the study-specific GRM; throughout
the manuscript we present p values from LMM analyses. To obtain interpretable
effect estimates for binary traits, we additionally performed tests of association
(adjusting for age, age2, sex, and the first four PCs of ancestry) using Firth’s
penalized likelihood logistic regression33 to estimate odds ratios, and estimated
Wald 95% confidence intervals using standard error estimates back calculated from
p values from the mixed linear models of association.

In the T2D-Genes/GoT2D/DIAGRAM studies, a combined analysis was
performed of rs116843064 genotypes extracted from exome array and whole exome
sequencing data for 72,803 participants in the T2D-Genes/GoT2D/DIAGRAM
studies34. The analysis of type 2 diabetes was performed using logistic regression
adjusted for age, sex, and intra-ethnic PCs followed by meta-analysis, with no
further adjustment. Fasting glucose was analyzed in non-diabetics using linear
regression adjusted for the same covariates.

The Michigan Genomics Initiative (MGI) is an institutional repository of DNA
and genetic data for broad long-term use at the University of Michigan. All pre-
operative patients 18 years of age or older are eligible for participation in the
Medical School Central Biorepository, which involves collecting blood and
completing a short questionnaire regarding pre-operative pain and basic lifestyle
questions, and links to electronic health record data. Exome array data were
available for 13,678 individuals of European ancestry who met case or control
criteria for type 2 diabetes. Firth’s penalized likelihood logistic regression adjusted
for sex and two PCs of ancestry was used to test for an association between
rs116843064 genotype (coded using an additive model) and type 2 diabetes.

Exome array data were available for 27,914 individuals participating in the
prospective Malmo and Diet and Cancer cohort study35. Logistic regression
adjusted for age, age2, and sex was used to test for an association between
rs116843064 genotype (coded using an additive model) and type 2 diabetes, defined
as previously described36. Linear regression adjusted for the same covariates was
used to test for an association between rs116843064 and log10 transformed fasting
glucose in 4848 individuals.

The UK Biobank is a prospective study of >500,000 people living in the United
Kingdom aged 40–69 years and living <25 miles from a study center. Analysis was
restricted to the subset of participants of white British descent, derived by UK
Biobank. Related individuals, individuals whose genetic sex did not match self-
reported sex, and extreme outliers were excluded, leaving 112,338 participants for
analysis. A combined analysis was performed of rs116843064 genotype data
extracted from genotype data produced for 112,338 UK Biobank37 study
participants using the UK Biobank array and UK BiLEVE arrays. Logistic
regression adjusted for age, sex, and 10 PCs of ancestry was used to test for an
association between rs116843064 and type 2 diabetes.
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The Nord-Trøndelag Health Study (The HUNT Study) is a population-based
health survey of more than 120,000 individuals conducted in the county of Nord-
Trøndelag in Norway from 1984 to 201638. The database contains clinical
examination results and is additional data from regional-level cross referencing
with registries. Genotype data for rs116843064 were available for 61,598 individuals
of Norwegian European ethnicity. Logistic regression adjusted for age, age2, sex,
and PCs 1–4 were used for assessing the association between rs116843064 and type
2 diabetes, applying an additive genetic model. Fasting glucose (>8 h since last
meal) were available for 2714 individuals without type 2 diabetes. Linear regression
adjusted for the aforementioned covariates was used to test for the association
between rs116843064 and log10 transformed fasting glucose measured in mmol/l.

The EPIC-InterAct case-cohort study39 is nested within the European
Prospective Investigation into Cancer and Nutrition (EPIC) cohorts40. EPIC-
InterAct includes 12,403 incident T2D cases and a subcohort of 16,154 individuals
that includes 778 randomly selected incident T2D cases. rs116843064 was either
directly genotyped on the Illumina HumanCoreExome chip, or imputed from
genotyping on the Illumina Quad660 genotyping chip (info= 0.87). Individuals in
the EPIC-Norfolk study were removed from analyses in EPIC-InterAct to avoid
double-counting. Association analysis with type 2 diabetes was performed using
logistic regression adjusted for age, age2, sex, and PCs 1–4.

EPIC-Norfolk is a prospective cohort study of 25,639 individuals aged between
40 and 79 years and living in the Norfolk county in East Anglia (United Kingdom)
at recruitment41. EPIC-Norfolk is a constituent cohort of the European Prospective
Investigation of Cancer. Participants were genotyped on the Affymentrix
UKBiobank chip, on which the p.E40K variant was directly genotyped. Association
analysis with type 2 diabetes was performed using logistic regression adjusted for
age, age2, sex, and PCs 1–4.

A total of 107,834 individuals from the Copenhagen City Heart Study,
Copenhagen General Population Study, and Copenhagen Ischemic Heart Disease
Study were included in the analysis42,43. Participants were directly genotyped for
rs116843064 with the use of the ABI PRISM 7900HT Sequence Detection System
(Applied Biosystems) and TaqMan-based assays or with the use of an allele-specific
PCR system (KASPer, LGC Genomics). Association analysis with type 2 diabetes
was performed using logistic regression adjusted for age, age2, and sex.

The deCODE study population for these analyses comprises 79,117 Icelandic
participants genotyped directly or with imputed (using long-range phased
haplotypes and, for a subset of cases, on the basis of information from genotyped
close relatives) genotypes for rs116843064. The rs116843064 variant was imputed
accurately in the deCODE population (imputation info= 0.99). The type 2 diabetes
case definition is described in Supplementary Table 4. Briefly, cases were enrolled
on the basis of four different, partially overlapping criteria: (1) Clinician confirmed
T2D cases; (2) T2D oral medication three times or more, or two times and current;
(3) two or more measures of hemoglobin A1c (HbA1c) >6.5%; and (4) one measure
of HbA1c >6.5% and oral medication and either self-reported T2D diagnoses or
hospital discharge diagnoses of T2D (PMID: 24464100). HbA1c levels were
extracted from computerized laboratory data. Participants with type 1 diabetes
were excluded. A control group was comprised of individuals recruited for genetic
research projects at deCODE without T2D. A generalized form of logistic
regression was used to test for association with sequence variants44. Sex, county of
birth, current age or age at death (first- and second-order terms), blood sample
availability, and an indicator function for the overlap of the individual’s lifespan
with the timespan of phenotype collection were included in the association model
as nuisance variables. The T2D association results were genomic controlled using
LD score regression (lambda= 1.53)45.

Fasting glucose levels were measured in 39,700 non-diabetic Icelanders (33,085
with available array genotype data). The measurements were performed for clinical
indications and were obtained from three of the largest laboratories in Iceland:
Landspitali University Hospital (LUH) in Reykjavik, Iceland, The Icelandic Medical
Center (Laeknasetrid) laboratory in Mjodd, Reykjavik, Iceland, and The Regional
Hospital in North Iceland (FSA), Akureyri, Iceland. Fasting glucose levels were
quantile–quantile standardized and age-adjusted for each sex separately. A
generalized linear regression model (mixed effect model) was used to test for
associations between sequence variants and quantitative traits, assuming an
additive genetic model46. The fasting glucose association results were genomic
controlled using LD-score regression (lambda= 1.33)45.

Participants in the Penn Medicine Biobank were recruited from phlebotomy
labs, preadmission testing, and cardiac catheterization labs at the University of
Pennsylvania Health System and consented for biospecimen storage, access to EHR
data, and permission to recontact. A total of 8123 participants of European
ancestry were included in this analysis. Type 2 diabetes case status was defined as in
Supplementary Table 4. rs116843064 genotypes were extracted from exome
sequence data generated at the Regeneron Genetics Center® according to the
protocols described above. Genetic association analyses for glucose and type 2
diabetes disease status were performed as described for the DiscovEHR discovery
and replication cohorts (described above).

A total of 6533 individuals from the Duke CATHeritization GENetics
(CATHGEN) bio-repository were included in this analysis. CATHGEN includes
clinical data and biological samples from individuals undergoing cardiac
catheterization between 2001 and 201047. Type 2 diabetes disease case status was
defined as in Supplementary Table 4. rs116843064 genotype LoFs were extracted
from exome sequence data generated at the Regeneron Genetics Center according

to protocols described above, with the following modification: samples were
processed using the Kapa HyperPlus kit modified for the Regeneron Genetics
Center’s custom automation and captured with the xGen Exome Research Panel
v1.0 from Integrated DNA Technologies (IDT). Genetic association analyses for
type 2 diabetes disease status were performed as described for the DiscovEHR
discovery and replication cohorts (described above).

Since phenotype transformations differed across contributing studies, single-
study summary statistics for the p.E40K association with glucose were combined
for meta-analysis using sample size-weighted p value-based meta-analysis in
METAL48, taking into account the direction of effect for each study. Summary
statistics for the p.E40K association with type 2 diabetes were combined using
inverse variance weighted meta-analysis in METAL.

Association of pLoFs in ANGPTL4 with type 2 diabetes. A summary of studies,
including definitions for type 2 diabetes case status, for the association between
ANGPTL4 pLoFs and type 2 diabetes is provided in Supplementary Table 7.

For the DiscovEHR study and DiscovEHR replication cohort, ANGPTL4 pLoFs
were extracted from exome sequence data generated at the Regeneron Genetics
Center® according to the protocols described above for the DiscovEHR study and
DiscovEHR replication cohort. ANGPTL4 pLoF carrier status and type 2 diabetes
case status were tabulated.

For UPenn Medicine Biobank, ANGPTL4 pLoFs were extracted from exome
sequence data generated at the Regeneron Genetics Center® according to the
protocols as described above for the UPenn Medicine Biobank cohort. ANGPTL4
pLoF carrier status and type 2 diabetes case status were tabulated.

For Duke CATHGEN, ANGPTL4 pLoFs were extracted from exome sequence
data generated at the Regeneron Genetics Center according to the protocols
described above for Duke CATHGEN cohort. ANGPTL4 pLoF carrier status and
type 2 diabetes case status were tabulated.

ForTAICHI, a total of 9058 samples from the TAIwan metaboCHIp (TAICHI)
consortium49–51, which aims to identify genetic determinants of atherosclerosis-
and metabolic-related traits in Taiwanese Chinese, were included in this analysis.
Academic centers participating include Taichung Veteran’s General Hospital, Tri-
Service General Hospital and the National Taiwan University Hospital, and the
National Health Research Institute in Taiwan for subject ascertainment and
phenotyping. Type 2 diabetes case status was defined according to physician
diagnosis criteria and adjudicated electronic health record information. ANGPTL4
pLoFs were extracted from exome sequence data generated at the Regeneron
Genetics Center® according to the protocols described above, and ANGPTL4 pLoF
carrier status and type 2 diabetes case status were tabulated.

In T2D-Genes/GoT2D/DIAGRAM studies, ANGPTL4 pLoFs were extracted
from exome sequence data generated on a subset of 16,839 participants in the T2D-
Genes/GoT2D/DIAGRAM studies described above and by Fuchsberger et al.34.
ANGPTL4 pLoF carrier status and type 2 diabetes case status were tabulated.

The Dallas Heart Study is a probability-based population cohort study of Dallas
County residents aged 30 to 65 years52. The Dallas Heart Study population used for
this analysis was comprised of 1355 European Americans and 2385 African
Americans. ANGPTL4 pLoFs were extracted from exome sequence data generated
at the Regeneron Genetics Center® according to the protocols described above, and
ANGPTL4 pLoF carrier status and type 2 diabetes case status were tabulated.

Since the very small counts of carriers of pLoF variants prohibited meta-analysis
of summary statistics, we assessed the association of ANGPTL4 pLOF variants with
type 2 diabetes by performing a two-sided exact conditional test of marginal counts
of carriers by type 2 diabetes disease status (implemented in the mantelhaen. test
function in the base R stats package; R Core Team (2017). R: A language and
environment for statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. URL https://www.R-project.org/).

Association of p.E40K with oral glucose tolerance. We performed tests of
association of p.E40K, encoded using an additive genetic model, with measures of
tolerance to a 75 g oral glucose challenge in up to 8081 non-diabetic participants in
the NIDDM Botnia20 and Prevalence, Prediction, and Prevention of Diabetes-
Botnia21 studies. All the traits were rank inverse transformed and converted to Z
score units. Association analyses were performed using linear mixed models of
association adjusted for age, sex and BMI. A genetic relatedness matrix was
included in each model as a random-effects covariate.

Phenome-wide studies of association of p.E40K. We performed a phenome-
wide study of associations of p.E40K with 316 quantitative EHR-derived anthro-
pometric, vital sign, laboratory, electrocardiographic, echocardiographic, and bone
densitometry measurements, and also with 1585 EHR-derived clinical diagnoses.
Median laboratory values for individuals with serial outpatient measures were
calculated following removal of likely spurious values that were >3 standard
deviations from the intra-individual median value; maximum and minimum values
were also calculated. We then calculated trait residuals for all laboratory traits after
adjustment for age, age2, sex, and the first four principal components, and applied
appropriate transformations prior to association analysis. ICD-10 diagnosis codes
were mapped to hierarchical clinical disease case groups and corresponding control
groups using a modified version of the groupings proposed by Denny et al.53,54.
ICD-10-based diagnoses required a problem list entry of the diagnosis code or an
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encounter diagnosis code entered for two separate clinical encounters on separate
calendar days.

Analyses of association with transformed quantitative clinical measurement
residuals were performed using linear regression, and analyses of association with
clinical diagnoses were performed using Firth’s penalized likelihood logistic
regression adjusted for age, age2, sex, and the first four principal components.
Alleles were coded using the additive (0 for reference allele homozygotes, 1 for
heterozygotes, and 2 for alternative allele homozygotes) model.

Animal studies. Angptl4−/− mice (99.9% C578Bl/6NTac background) were gen-
erated using Regeneron’s VelociGene technology55. Male mice, single housed at
6–9 weeks of age, were maintained on a 12 h light/dark cycle and and fed ad
libitum with chow (LabDiet, 5001) or high-fat diet (Research Diets, D12451; 45%
fat by calories). Glucose tolerance and glucose levels were measured as previously
described56. Circulating triglycerides, total cholesterol, alanine aminotransferase,
and aspartate aminotransferase levels were determined in serum using an ADVIA®

1800 blood chemistry analyzer (Siemens). Liver triglyceride level was evaluated as
previously described57. Body composition was measured using PIXIMus dual
energy X-ray absorptiometry (DEXA) (GE Medical Systems). Metabolic cage data
were generated using the Oxymax Lab Animal Monitoring System CLAMS
(Columbus Instruments) as described58. The overexpression studies using hydro-
dynamic DNA delivery were conducted as previously described56.

All animal procedures were conducted in compliance with protocols approved
by the Regeneron Pharmaceuticals Institutional Animal Care and Use Committee.
For the mouse, data are expressed as mean+/− standard error of the mean. Mean
values were compared using unpaired t-tests or two-way analysis of variance
(ANOVA) as implemented in the Graphpad Prism 6.0 software (Graphpad
Software, Inc.).

Evaluation of ANGPTL4 concentration in human plasma. Human ANGPTL4
plasma levels were measured by hANGPTL4 ELISA (DY3485, R&D Systems, MN).

Data availability. The data supporting the findings of this study are available
within the article and its Supplementary Data files. Additional information for
reproducing the results described in the article is available upon reasonable request
and subject to a data use agreement. Additional information on the DiscovEHR
study is available at http://www.discovehrshare.com.
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