2,605 research outputs found
Quarkonium production in A-A and p-A collisions
Thirty years ago, the suppression of quarkonium production in heavy-ion
collisions was first proposed as an unambiguous signature for the formation of
a Quark-Gluon Plasma. Recent results from the LHC run 2 have led to an
unprecedented level of precision on this observable and, together with new data
from RHIC, are providing an accurate picture of the influence of the medium
created in nuclear collisions on the various charmonium (J/, (2S))
and bottomonium (, , ) states,
studied via their decay into lepton pairs. In this contribution, I will review
the new results presented at Quark Matter 2017, emphasizing their relation with
previous experimental observations and comparing them, where possible, with
theoretical calculations.Comment: 8 pages, 8 figures, to be published in Nuclear Physics A, proceedings
of the XXVI international conference on ultrarelativistic heavy-ion
collisions, Quark Matter 2017, February 5-11, 201
Heavy-ion collisions at the Large Hadron Collider: a review of the results from Run 1
We present an overview of the results obtained in pPb and PbPb collisions at
the Large Hadron Collider during Run 1. We first discuss the results for global
characteristics: cross sections, hadron multiplicities, azimuthal asymmetries,
correlations at low transverse momentum, hadrochemistry, and femtoscopy. We
then review hard and electromagnetic probes: particles with high transverse
momentum, jets, heavy quarks, quarkonium, electroweak bosons and high
transverse momentum photons, low transverse momentum photons and dileptons, and
ultraperipheral collisions. We mainly focus on the experimental results, and
present very briefly the main current theoretical explanations.Comment: 33 pages, 29 figure
J/ production in In-In and p-A collisions
The NA60 experiment studies dimuon production in In-In and p-A collisions at
the CERN SPS. We report recent results on \jpsi production, measured through
its muon pair decay. As a function of centrality, we show that in In-In the
\jpsi yield is suppressed beyond expectations from nuclear absorption. We
present also for the first time results on \jpsi production in p-A collisions
at 158 GeV, the same energy of the nucleus-nucleus data. For both p-A and In-In
we show preliminary results on \psip suppression. Finally, we have studied the
kinematical distributions of the \jpsi produced in In-In collisions. We present
results on transverse momentum and rapidity, as well as on the angular
distribution of the \jpsi decay products.Comment: 8 pages, Quark Matter 2006 conference proceeding
Open-charm enhancement at FAIR?
We have calculated the D-meson spectral density at finite temperature within
a self-consistent coupled-channel approach that generates dynamically the
(2593) resonance. We find a small mass shift for the D-meson in
this hot and dense medium while the spectral density develops a sizeable width.
The reduced attraction felt by the D-meson in hot and dense matter together
with the large width observed have important consequences for the D-meson
production in the future CBM experiment at FAIR.Comment: 4 pages, 2 figures, to appear in the proceedings of 9th International
Conference on Strangeness in Quark Matter (SQM2006), Los Angeles, USA, March
26-31, 200
Influence of ethephon stimulation on latex physiological parameters and consequences on latex diagnosis implementation in rubber agro-industry
Latex Diagnosis (LD) is currently considered by Cirad and most of its rubber agro-industry partners as a routine physiological tool to optimise, at block level, the rubber yield production of the rubber plantations. Without using LD, a general stimulation recommendation per clone and per tapping year is generally applied at plantation scale, as a function of tapping cut position and direction, whatever the local and actual yield potential is. Even though this general recommendation is based on clonal physiological latex characteristics, such a global approach does not permit to consider the local specificities of the yield potential, as it avoids considering factors like soil heterogeneity, microclimate variations in larger estates and differential expression of diseases (leaf diseases, root diseases...). In this case, plantations are almost "blind" regarding suitability of the applied stimulation intensities, and uniform application of the same rate of stimulant in all homogenous cultural units may sometimes lead to optimised exploitation but may also lead locally to under exploitation in higher yield potential areas or to over exploitation in lower yield potential areas. Using LD permits to optimize the stimulation at local level (decrease of stimulation when an over exploitation is detected, increase of stimulation intensity when an under exploitation is detected) and therefore permits the yield optimisation block per block, taking into account the plantations heterogeneities and therefore the actual local yield potential. Of course, LD interpretation depends on former set up LD parameters reference values. These ones are clonal and established for the 4 parameters used in LD: latex sucrose content, latex inorganic phosphorus content, latex reduced thiols content and DRC/TSC. These LD reference values are established for 5 limit levels (very low, low, normal, high and very high), for each LD parameter (Suc, Pi, RSH and DRC/TSC), either at regional scale or, in case of large estates and companies, at plantation scale when local LD parameters database is large enough. To set up correctly these LD reference values, it is required to know what can be the general evolution of the 4 LD parameters depending on exploitation intensity. These evolutions are detailed in the document. (Résumé d'auteur
Spin physics at A Fixed-Target ExpeRiment at the LHC (AFTER@LHC)
We outline the opportunities for spin physics which are offered by a next
generation and multi-purpose fixed-target experiment exploiting the proton LHC
beam extracted by a bent crystal. In particular, we focus on the study of
single transverse spin asymetries with the polarisation of the target.Comment: Contributed to the 20th International Spin Physics Symposium,
SPIN2012, 17-22 September 2012, Dubna, Russia, 4 pages, LaTe
Prospectives for A Fixed-Target ExpeRiment at the LHC: AFTER@LHC
We argue that the concept of a multi-purpose fixed-target experiment with the
proton or lead-ion LHC beams extracted by a bent crystal would offer a number
of ground-breaking precision-physics opportunities. The multi-TeV LHC beams
will allow for the most energetic fixed-target experiments ever performed. The
fixed-target mode has the advantage of allowing for high luminosities, spin
measurements with a polarised target, and access over the full backward
rapidity domain --uncharted until now-- up to x_F ~ -1.Comment: 6 pages, 1 table, LaTeX. Proceedings of the 36th International
Conference on High Energy Physics (ICHEP2012), 4-11 July 2012, Melbourne,
Australi
A Fixed-Target ExpeRiment at the LHC (AFTER@LHC) : luminosities, target polarisation and a selection of physics studies
We report on a future multi-purpose fixed-target experiment with the proton
or lead ion LHC beams extracted by a bent crystal. The multi-TeV LHC beams
allow for the most energetic fixed-target experiments ever performed. Such an
experiment, tentatively named AFTER for "A Fixed-Target ExperRiment", gives
access to new domains of particle and nuclear physics complementing that of
collider experiments, in particular at RHIC and at the EIC projects. The
instantaneous luminosity at AFTER using typical targets surpasses that of RHIC
by more than 3 orders of magnitude. Beam extraction by a bent crystal offers an
ideal way to obtain a clean and very collimated high-energy beam, without
decreasing the performance of the LHC. The fixed-target mode also has the
advantage of allowing for spin measurements with a polarised target and for an
access over the full backward rapidity domain up to xF ~ - 1. Here, we
elaborate on the reachable luminosities, the target polarisation and a
selection of measurements with hydrogen and deuterium targets.Comment: 6 pages. Proceedings of the Sixth International Conference on Quarks
and Nuclear Physics QNP2012 (16-20 April 2012, Ecole Polytechnique,
Palaiseau,France
Examine the species and beam-energy dependence of particle spectra using Tsallis Statistics
Tsallis Statistics was used to investigate the non-Boltzmann distribution of
particle spectra and their dependence on particle species and beam energy in
the relativistic heavy-ion collisions at SPS and RHIC. Produced particles are
assumed to acquire radial flow and be of non-extensive statistics at
freeze-out. J/psi and the particles containing strangeness were examined
separately to study their radial flow and freeze-out. We found that the strange
hadrons approach equilibrium quickly from peripheral to central A+A collisions
and they tend to decouple earlier from the system than the light hadrons but
with the same final radial flow. These results provide an alternative picture
of freeze-outs: a thermalized system is produced at partonic phase; the
hadronic scattering at later stage is not enough to maintain the system in
equilibrium and does not increase the radial flow of the copiously produced
light hadrons. The J/psi in Pb+Pb collisions at SPS is consistent with early
decoupling and obtains little radial flow. The J/psi spectra at RHIC are also
inconsistent with the bulk flow profile.Comment: 12 pages, 4 figures, added several references and some clarifications
et
- …
